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  Introduction  

 Anyone who has spent time around young children will notice that they acquire language at an 
alarming rate – they go from being non-verbal in early infancy to speaking in full and grammat-
ically complex sentences between their second and third birthdays. A question that has been of 
particular interest to researchers is, how do children learn language so quickly? One prominent 
hypothesis is that infants may begin to learn language by picking up on the patterns or structures 
in their linguistic environment even before they know very much about the specifi c characteris-
tics of their native language – a capability that is often referred to as statistical learning. 

 The idea that infants can track regularities in their linguistic input was popularized in 1996 
by Jenny Saffran, Richard Aslin, and Elissa Newport. They showed that following 2 minutes 
of familiarization with an artifi cial language (e.g.,  pabikugolapitimore  . . .), 8-month-old infants 
could discriminate syllable sequences that had occurred together consistently (i.e., words) from 
those that spanned word boundaries (i.e., part-words). These fi ndings suggested that infants may 
be able to track the co-occurrence patterns (also referred to as sequential statistics, conditional 
statistics, and transitional probability) between syllables to discover words in continuous speech 
(Saffran, Aslin, & Newport, 1996). This work has been replicated many times with other artifi -
cial (e.g.,  Aslin, Saffran, & Newport, 1998 ;  Thiessen & Saffran, 2003 ) and natural languages (e.g., 
 Karaman & Hay, 2018 ;  Pelucchi, Hay, & Saffran, 2009a ,  b ) (see Section 2 of this volume for 
more information about statistical learning and speech segmentation; see the Conclusions sec-
tion of this chapter for extensions of this work beyond speech and humans), and such tracking 
is believed to occur implicitly or incidentally (i.e., without conscious awareness; e.g.,  Saffran, 
Newport, Aslin, Tunick, & Barrueco, 1997 ). Finding words in continuous speech is just one of 
the many learning challenges infants face when acquiring language. Infants also need to discover 
which sounds are relevant in their native language, how sound sequences map to meaning, and 
how elements in language are organized relative to one another, to name a few. The past two 
decades of research have suggested that infants have remarkable computational abilities that 
may allow them to track the types of statistical regularities relevant to each of these learning 
challenges. 

 Through the use of highly controlled experiments, laboratory demonstrations of statistical 
learning have been very informative regarding infants’ capabilities. Yet we still do not know if, 
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and to what degree, infants rely on these computational abilities to learn language outside of 
the laboratory. We suggest that the fi eld may be able to glean insight into the role of statistical 
learning by looking at how individual differences in statistical learning abilities relate to lan-
guage development. 

 This chapter is organized into four sections. In each section we will begin by highlighting 
a language learning challenge faced by infants: 1. discovering the sounds in language, 2. fi nding 
words in continuous speech, 3. mapping words to meaning, and 4. learning rudimentary gram-
mar. In each section we will provide an overview of the kind of statistical regularities available in 
the input and review a representative sampling of the evidence that suggests that infants can track 
those statistics (for a recent review, see also  Saffran & Kirkham, 2018). For each of these learn-
ing challenges, if relevant data are available, we will discuss what is known about how individual 
differences in statistical learning are related to language development in both typical and atypical 
infant and child populations. Our goal in this chapter is to give the reader a fl avor of the ways 
that statistical learning in infancy (and childhood) is studied in the lab and to highlight evidence 
to suggest that it may account for some meaningful individual differences in language acquisition.  

  Discovering the sounds in  language 

 One of the major learning challenges faced by infants early in development is discovering which 
speech sounds and speech sound variations are relevant in their native language. Infants dem-
onstrate early sensitivity to many of the sounds found across the world’s languages ( Kuhl, Tsao, 
Liu, Zhang, & Boer, 2001 ). As they gain experience with their native language, infants tend to 
show reduced sensitivity to many non-native phonemes ( Lalonde & Werker, 1995 ;  Werker & 
Tees, 1984 ) and show an increased ability to be able to discriminate native-language phonemes 
( Kuhl, Stevens, Hayashi, Deguchi, Kiritani, & Iverson, 2006 ;  Narayan, Werker, & Beddor, 2010 ). 
This process has been referred to as perceptual narrowing (for a review, see  Maurer & Werker, 
2014 ) or native-language attunement (see   Chapter 15  for a more in-depth discussion of the 
development of speech perception). Evidence of perceptual narrowing in monolinguals is typi-
cally observed around 10 to 12 months of age for consonants (e.g.,  Kuhl et al., 2001 ;  Werker & 
Tees, 1984 ), and somewhat earlier for vowels (e.g.,  Polka & Werker, 1994 ). For infants being 
exposed to more than one language, there is the added challenge of learning two phonological 
systems, and bilinguals tend to show somewhat protracted perceptual narrowing (see   Chapter 16  
for further information about bilingual language acquisition). 

 The speed with which infants learn to attend to some sound contrasts and ignore others has 
been of interest to researchers for a long time. One of the most prominent hypotheses is that 
infants home in on the sound patterns of their native language(s) by tracking statistical regulari-
ties in the frequencies and distributions of sounds in acoustic space ( Maye, Werker, & Gerken, 
2002 ;  Werker, Yeung, & Yoshida, 2012 ). In the extant literature, this type of pattern detection is 
referred to as distributional learning, and is arguably one of lowest level forms of statistical learn-
ing (see  Ambridge, Kidd, Rowland, & Theakston, 2015 ). Consistent with this idea, each of the 
world’s languages offers the developing infant different distributions of acoustic information. So, 
for example, American English /r/ and /l/, which are lexically contrastive in that they can be 
used to differentiate word meaning (e.g.,  rate  vs.  late ), are produced with a bimodal distribution 
along a particular acoustic dimension (i.e., the frequency of the third formant (F3)). That is, in 
natural speech, exemplars of /r/ cluster together at lower values of F3, whereas exemplars of /l/ 
cluster together at higher values of F3, with only a small degree of acoustic overlap between pro-
ductions of /r/ and /l/. In contrast, in natural Japanese productions there is a unimodal cluster 
of sounds, called a fl ap, that overlaps with American English /r/ and /l/ (see   Figure 4.1  for an 
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example of natural productions of English /l/ and /r/, and the Japanese fl ap, from  Lotto, Sato, & 
Diehl, 2004 ). Although both English- and Japanese-learning infants are initially able to discrimi-
nate English /r/ from /l/, by the time they are 11 months old Japanese-learning infants have 
collapsed the English contrast into a single category, consistent with the distributional informa-
tion found in their language ( Kuhl et al., 2001 ). Thus, sensitivity to this type of statistical distri-
butional information might account for perceptual narrowing observed in the fi rst year of life.         

  Maye, Werker, and Gerken (2002 ) tested the prediction that infants are sensitive to distri-
butional information by presenting 6- and 8-month-old infants with a bimodal or unimodal 
distribution during familiarization and then testing their subsequent speech perception abilities. 
They created a continuum of eight tokens between English /da/ and /ta/ (voiceless unaspirated 
stop) that varied in voice onset time, as well as F1 and F2 trajectory. In the bimodal condition 
infants heard a greater frequency of tokens at either end of the continuum, whereas in the uni-
modal condition the majority of the tokens were selected from the middle of the continuum 
(see   Figure 4.2 ). This manipulation effectively simulated experience with languages that have 
two phoneme categories along a continuum (i.e., bimodal) versus languages that have a single 
phoneme category (i.e., unimodal). Following familiarization, only infants in the bimodal con-
dition were able to discriminate the two endpoint tokens. This pattern of results suggests that 
experience with bimodal distributions may lead infants to form separate phoneme categories, 
whereas experience with unimodal distributions may encourage infants to collapse acoustic var-
iation into a single category. In a conceptual replication of this work, Teinonen and colleagues 
( Teinonen, Aslin, Alku, & Csibra, 2008 ) found that visual speech information can also alter how 
infants assign distributional information to phonetic categories.         

 Across the fi rst year, in addition to discovering the relevant sound categories of their native 
language, infants also become better at discriminating native-language phonemes ( Kuhl et al., 
2006 ;  Narayan, Werker, & Beddor, 2010 ). In follow-up work,  Maye, Weiss, and Aslin (2008 ) 
tested the prediction that distributional information also enhances phoneme discrimination, 
especially for contrasts that are initially diffi cult to discriminate. Again, infants were familiarized 
with either a unimodal or bimodal distribution and were tested on tokens from the endpoint 
of that distribution (i.e., /da/ and /ta/) or on a different contrast that varied along the same 
acoustic dimension (i.e., voice onset time, /ka/ and /ga/). Discrimination was only facilitated 
by experience with the bimodal distribution, for both the trained distribution and the novel 
contrast. These results suggest that infants can use distributional information to extract a specifi c 
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   Figure 4.2   Bimodal (dashed lines) and unimodal (solid line) sound distributions used in  Maye, Werker, & 
Gerken, 2002 .  
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acoustic feature (e.g., voice onset time), and generalize this knowledge to novel sound distinc-
tions. Clearly, distributional information in natural language is much more complex than the 
distributions presented in the lab. However, if infants are also sensitive to the distribution of 
speech sounds found in natural language, this sensitivity may support phonological development. 

 Further support for the idea that infants learn their phoneme categories through a process of 
distributional learning comes from work by  Anderson, Morgan, and White (2003 ) showing that 
infants home in more quickly on consonant contrasts that occur more frequently in their input 
than on those that are heard more seldom. Consistent with this, infants perceptually narrow in 
on native-language vowel categories more quickly than consonant categories ( Polka & Werker, 
1994 ). Indeed, languages tend to have fewer vowels than consonants, and thus individual vowels 
typically occur more frequently in the input. Infants being exposed to more than one language 
have the added challenge of differentiating distributional patterns both within and across their 
languages (see  Chapter  16 for further information about bilingual language acquisition). These 
fi ndings support the idea that the sounds that are heard more frequently are learned more 
quickly, suggesting that infants are also attentive to distributional properties in natural language 
input. 

 Computational modeling work has aimed to further uncover how sensitivity to distribu-
tional statistics interacts with other learning processes to give rise to phoneme learning. Recent 
computational models have suggested that the competition between representations of similar 
speech sounds may be one way that distributional statistics are categorized into phonemes. 
For example, in modeling biologically plausible distributional learning for vowels Vallabha and 
colleagues ( Vallabha, McClelland, Pons, Werker, & Amano, 2007 ) found that phoneme clusters 
emerge from experience with the environment through competitive Hebbian learning pro-
cesses that strengthen often heard phonemes into clusters, and prune the connections to less 
often heard sounds. Taking a different approach,  McMurray, Aslin, and Toscano (2009 ) modeled 
the developmental trajectory of phoneme learning and also suggest that competitive processes 
are vital to phoneme categorization. According to their model, early in development, phoneme 
categories are represented continuously, with little space between representations. However, 
with exposure to distributional statistics, and the addition of a winner-take-all competition 
mechanism, phoneme categories became sparse and more discrete across developmental time, 
mimicking distributional phoneme category learning. Together, these modeling studies suggest 
that distributional statistics interact with perceptual and neural competition mechanisms to 
drive the phoneme learning process. 

 Some research suggests that distributional learning abilities may begin to decrease around 10 
months of age, when infants appear to pick up on distributional patterns only if they engage 
in sustained attention during familiarization ( Yoshida, Pons, Maye, & Werker, 2010 ). Further, 
beyond 10 months listeners may require additional experience with distributional patterns to 
show learning ( Yoshida et al., 2010 ;  Maye & Gerken, 2000 ). This timeframe appears to be con-
sistent with the trajectory of perceptual narrowing in infancy ( Maurer & Werker, 2014 ) and may 
also coincide with infants’ ability to begin to take advantage of word-level information, such as 
lexical items that contrast in a single vowel (e.g.,  dog  vs.  dig ) or consonant (e.g.,  cat  vs.  hat ) (i.e., 
minimal pair words) when learning overlapping phonetic categories ( Feldman, Myers, White, 
Griffi ths, & Morgan, 2013 ). 

 Nevertheless, being good at tracking distributional properties in natural language early in 
infancy may produce a cascading effect on subsequent language learning. Indeed, Kuhl and 
colleagues ( Kuhl, Conboy, Padden, Nelson, & Pruitt, 2005 ;  Tsao, Liu, & Kuhl, 2004 ) provide 
evidence that individual differences in how quickly infants home in on their native-language 
sound categories are related to later language outcomes. For example,  Tsao, Liu, and Kuhl (2004 ) 
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found that infants’ ability to discriminate vowels at 6 months predicted their productive vocabu-
lary size at 13, 16, and 24 months. In a subsequent, larger-scale study,  Kuhl and colleagues (2005 ) 
found that 7-month-olds’ ability to discriminate native and non-native contrasts was negatively 
correlated, such that infants who are better at discriminating phonemes in their native language 
are worse at discriminating non-native contrasts. Additionally, performance on native and non-
native contrasts predicted later language outcomes in opposite directions. Infants who were 
better at native-language phoneme discrimination showed larger productive vocabulary sizes at 
18 and 24 months, longer mean length of utterance, and greater sentence complexity com-
pared to the infants who were less good at discriminating native-language contrasts. Conversely, 
infants who showed better performance on non-native contrasts at 7 months had smaller pro-
ductive vocabularies, smaller mean length of utterances, and less complex sentences when tested 
at 24 months. 

 Individual differences in speech perception skills also appear to be tied to language outcomes 
in atypical populations. For example, infants at familial risk for developing dyslexia show poorer 
phoneme discrimination at 6 months than age-matched controls ( Lyytinen et al., 2001 ). Addi-
tionally, when tested 3 years later they produced shorter sentences and had smaller vocabularies. 
Longitudinal data from Boets and colleagues ( Boets, Vandermosten, Poelmans, Luts, Wouters, & 
Ghesquière, 2011 ) also supports the link between speech perception skills and dyslexia; children 
who performed worse on a phoneme perception task in kindergarten or fi rst grade were more 
likely to be diagnosed with dyslexia 2 to 3 years later. Taken together, these results suggest that 
early speech perception skills may infl uence later language outcomes in children with dyslexia 
( Banai & Ahissar, 2017 ;  Boets et al., 2011 ;  Lyytinen et al., 2001 ). Section 3 of this volume will 
provide a more in-depth review of language development in atypical populations. 

 Findings on individual differences from both typical and atypical populations do not directly 
test the relationship between distributional learning and subsequent language outcomes. How-
ever, they do suggest that infants who learn to differentiate meaningful from irrelevant sound 
variants at a young age continue to be more advanced language users in the second year of life 
and beyond. If distributional learning drives perceptual narrowing, it stands to reason that infants 
who are better distributional learners may ultimately be more skilled language users.  

  Finding words in speech  

 A second, and likely concurrent, challenge infants face when learning language is fi nding words 
in continuous speech. Word boundaries in spoken language are not marked by silent pauses 
( Cole & Jakimik, 1980 ), and less than 10% of the words infants hear occur in isolation ( Brent & 
Siskind, 2001 ). Yet, by their fi rst birthday, infants can understand many words and are beginning 
to produce their fi rst words. Although natural languages contain various cues to word bounda-
ries, such as prosodic patterns, phonotactic regularities, and allophonic variations, these cues are, 
by and large, language-specifi c. Thus, to use these cues infants need to know how they pattern 
in words in their native language. How do infants segment the speech before they know much 
about the patterns in their native language? 

 One of the most prominent hypotheses is that infants may begin to discover word bounda-
ries, and thus segment words from fl uent speech, by tracking the predictability between syllables 
within words and across word boundaries (e.g.,  Aslin, Saffran, & Newport, 1998 ;  Saffran et al., 
1996 ). In natural language, syllables within words tend to be highly predictive, whereas across 
word boundaries syllables are less predictable because words can be combined in many different 
ways. This type of statistical regularity is referred to as forward transitional probability (TP) when 
the fi rst syllable of a word predicts the occurrence of the next syllable. 
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Forward TP = P Y X
frequency XY
frequency X

( ) = ( )
( )

Backward TP = P X Y
frequency XY
frequency Y

( ) = ( )
( )

 When a given syllable predicts the occurrence of a former syllable, the statistics is referred to as 
backward TP and may be especially informative at the phrasal level in some languages (e.g., in 
the phrase  the dog  hearing  dog  predicts the occurrence of  the , but not vice versa). Both forward 
and backward TPs are types of sequential co-occurrence statistics, because the predictive ele-
ments occur sequentially. Mutual information is the extent to which syllables within words are 
informative about each other ( Swingley, 1999 ;  2005 ), and thus is essentially a statistic that incor-
porates predictive information in both the forward and backward directions. Finally, syllables and 
words also differ in their base-rate frequencies (i.e., how many times they occur;  Swingley, 2005 ). 
Corpus analyses reveal that all of these sources of information are available in the input and may 
provide a fairly reliable language-general cue to word boundaries ( Swingley, 1999 ). 

 As mentioned in the introduction, seminal work by  Saffran, Aslin, and Newport (1996 ) 
demonstrated that infants are actually quite good at tracking TP information to fi nd word 
boundaries in artifi cial language materials, suggesting that infants may begin to break into the 
speech stream by tracking sequential statistics in their input. This fi nding has been replicated 
numerous times (for a review, see Krogh, Vlach, & Johnson, 2013;  Romberg & Saffran, 2010 ). 
Artifi cial languages are useful for designing tightly controlled studies and establishing infants’ 
computational abilities, but lack the complexity associated with natural language input. In an 
attempt to increase ecological validity,  Pelucchi, Hay, and Saffran (2009a ) created familiarization 
corpora where we manipulated the statistics within words in a natural language. The corpus 
comprised naturally produced, grammatically correct, and semantically meaningful Italian sen-
tences. Importantly, four key target words were incorporated throughout the corpus. Two of the 
target words had a high TP (HTP; TP = 1.0) because the syllables that made up the words never 
occurred anywhere else in the corpus. The other two target words had a low TP (LTP; TP = .33) 
because their fi rst syllable occurred in many other words throughout the corpus (thus, TP was 
low in the forward direction). All four of the words were phonotactically legal in both English 
and Italian, and had a strong-weak (i.e., trochaic) stress pattern characteristic of disyllabic words 
in both languages. Using procedures very similar to those of  Saffran and colleagues (1996 ), we 
found that following just 2 minutes of familiarization, 8-month-old infants preferred listening 
to the HTP words, even though both HTP and LTP words had been heard an equal number of 
times (i.e., 18 times) in the speech stream. This work suggests that infants are able to track TP 
information even in complex natural speech and lends support for the idea that statistical learn-
ing may play a role in early speech segmentation. In subsequent work, we have found that not 
only are young infants sensitive to forward TP information, but they can also use backward TP 
to fi nd words in naturally spoken Italian ( Pelucchi et al., 2009b ). 

 As infants gain experience with the prosodic and phonotactic patterns of words in their 
native language, they may come to rely less on sequential statistics to fi nd words in speech, in 
favor of language-specifi c cues. And indeed, statistical learning may be one avenue through 
which infants learn these language-specifi c patterns ( Thiessen & Saffran, 2003 ). For exam-
ple, using artifi cial language materials,  Thiessen and Saffran (2003 ; see also  Thiessen & Saffran, 
2007 ;  Johnson & Jusczyk, 2001 ) found that earlier in development (~ 7 months), infants rely 
more heavily on TP information than on stress pattern cues for identifying word boundaries. 
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However, by 9 months infants appear to weigh syllable stress more heavily than TP information. 
Thus, as infants gain more experience with their native language, their ability to track statistical 
patterns in speech interacts with what they know about cues to word boundaries in their native 
language (see also  Johnson & Seidl, 2009 ). Fortunately, language-general and language-specifi c 
cues to word boundaries tend to converge in natural speech, and infants appear to benefi t from 
the combined cues ( Christiansen, Allen, & Seidenberg, 1998 ;  Romberg & Saffran, 2010 ). Indeed, 
in our tasks (see  Pelucchi et al., 2009a ,  b ), infants were presented with at least two cues to word 
boundaries – TP information and lexical stress – and these converging cues may have made it 
easier for infants to track TP in the complex natural language input. In our lab, we are currently 
testing whether infants can track TP information in natural language when the target words 
have a less familiar, iambic (weak-strong) stress pattern. 

 Statistical-sequential learning may also be supported by other cues present in natural speech. 
For example, although isolated words do not make up a large portion of input to infants 
( Brent & Siskind, 2001 ), they appear to benefi t from isolated words when computing TP (Lew-
Williams, Pelucchi, & Saffran, 2011). Isolated words also appear to selectively support long-term 
memory for statistically defi ned words recently segmented from fl uent speech by 8-month-old 
infants ( Karaman & Hay, 2018 ). Work with adults further suggests that when words’ base-rate 
frequencies are scaled up to those found in natural speech, signature patterns of statistical learning 
are replicated and persist in long-term memory ( Frank, Tenenbaum, & Gibson, 2013 ). Finally, 
8-month-olds can combine known words and TP information to enhance their word segmen-
tation ( Mersad & Nazzi, 2012 ). Similar to our discussion of the role of distributional learning 
in phoneme acquisition, the extant data does not provide defi nitive evidence infants actually 
use their ability to track TP information in the service of learning their native language. How-
ever, demonstrations that infants can track TP over input that increasingly approximates natu-
ral language input suggests that statistical-sequential learning may indeed be related to speech 
segmentation. 

 The link between statistical-sequential learning and language acquisition is further supported 
by recent research by Jill Lany and colleagues ( Lany, Shoaib, Thompson, & Graf Estes, 2018 ) and 
by work with atypical populations (for a meta-analysis on the relation between statistical learn-
ing and specifi c language impairment, see Lammertink, Boersma, Wijnen, & Rispens, 2017). 
 Lany and colleagues (2018 ) measured 15-month-old infants’ performance on both a standard 
speech segmentation task that requires infants to track TP information in fl uent speech and a 
task that measures their lexical knowledge, with the prediction that the infants who are better at 
processing native-language input may also be better statistical learners. They found that infants 
who were faster to look at a familiar object after it was labeled also demonstrated a preference 
for high TP words following familiarization with an artifi cial language. These fi ndings suggest 
an intimate relationship between infants’ sensitivity to statistical cues in the input and how well 
they know words in their native language. 

 Research with atypical populations can also reveal the potential relevance of statistical-
sequential learning for language acquisition. Interestingly, 8- to 20-month-olds diagnosed with 
Williams Syndrome, a genetic disorder that impairs cognitive functioning but leaves language 
functioning relatively intact, show no impairment in tracking sequential statistics in artifi cial 
language materials ( Cashon, Ha, Graf-Estes, Saffran, & Mervis, 2016 ). Conversely, children with 
Developmental Language Disorder (DLD;  Bishop, Snowling, Thompson, & Greenhalgh, 2017 ) 
(sometimes also referred to as Specifi c Language Impairment; SLI), who demonstrate relatively 
intact cognition but impaired language, have been shown to have diffi culty tracking sequential 
statistics in similar types of studies ( Evans, Saffran, & Robe-Torres, 2009 ; see also a recent meta-
analysis by Lammertink et al., 2017). Children with autism spectrum disorder (ASD), who tend 

1531-2559d.indd   58 3/8/2019   8:35:04 PM



Statistical learning approaches

59

to show a great deal of variability in language skills, appear to be sensitive to sequential statis-
tics in artifi cial language materials ( Mayo & Eigsti, 2012 ), but not in natural language stimuli 
( Kovelman et al., 2015 ).  Kovelman and colleagues (2015 ) suggest that the reduced sensitivity 
to rhythmic information in continuous speech seen in children with Autism may impair their 
ability to track TP information in natural language. Further studies that explore the relation-
ship between individual difference in language skills within atypical populations and statistical-
sequential learning abilities may bolster support for the importance of statistical learning in 
language development.  

  Mapping words to meaning  

 A third challenge infants face when learning language is discovering how words map to mean-
ing. Infants begin to associate words and objects early in development, and know the names of 
some concrete nouns as early as 6 months of age ( Bergelson & Swingley, 2012 ; Tincoff & Jusc-
zyk, 2012). However, there remain challenges in determining both what sound combinations 
form good labels, and which of the many possible referents in the environment a given label 
refers to. In this way, the learning challenge is often ambiguous on multiple levels. 

 To overcome the challenge of discovering potential word candidates, infants can rely on 
what they already know about sounds. For instance, nonsense words with features consistent 
with those present in the native language (e.g., high phonotactic probability, high neighborhood 
density, stress pattern) are treated as better candidate labels than those that do not follow such 
patterns (e.g.,  Gonzalez-Gomez, Poltrock, & Nazzi, 2013 ;  Graf Estes & Bowen, 2013 ;  MacKen-
zie, Curtin, & Graham, 2012 ;  Storkel, Bontempo, Aschenbrenner, Maekawa, & Lee, 2013 ). 

 There is also evidence that infants treat recently segmented sounds as good word candidates. 
For example,  Graf Estes, Evans, Alibali, and Saffran (2007 ) found that 17-month-olds readily 
learn to map words segmented from an artifi cial language (TP = 1.0) to visual referents, but 
fail to map nonwords and part-words (TPs of 0.33 and 0, respectively). Moreover, we found 
a similar pattern of results with 17-month-olds when they were familiarized with a corpus of 
naturally produced Italian ( Hay, Pelucchi, Graf Estes, & Saffran, 2011 ) – infants mapped high TP 
(HTP, TP = 1.0) words to novel objects, but failed to map low TP (LTP) words (forward and 
backward TP = .33). 

 In recent work from our lab, we are fi nding that when words are presented in carrier phrases 
(e.g., “Look at the casa”), older infants aged 22 to 24 months, map both HTP and LTP words 
to referents, but do so for different reasons. Like younger infants, older infants appear to map 
HTP words because of their strong internal sequential statistics. However, older infants appear to 
be mapping the LTP words because the syllables that compose those words are highly frequent 
in the corpus. 1  Thus, for older infants both sequential statistics (i.e., TP information) and syl-
lable frequency statistics appear to feed into subsequent word learning. Interestingly, individual-
differences data exploring the relationship between performance on our word learning task and 
vocabulary size support our fi ndings that HTP and LTP words are mapped for different reasons; 
there were no signifi cant correlations between vocabulary size and word learning for the HTP 
words, but there was a signifi cant negative correlation between vocabulary size and word learn-
ing for LTP words. 

 In a more pared-down task that provided minimal referential support, with slightly younger 
20-month-old infants,  Shoaib, Wang, Hay, and Lany (2018 ) found that although, overall, infants 
did not show learning of either HTP or LTP words, performance was also correlated with 
their vocabulary size. Only infants with a smaller vocabulary successfully mapped the HTP 
words to meaning, suggesting that as infants gain native-language knowledge they become less 
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open to treating non-typical words as good object labels. Further, like in the work from our lab 
described above, infants with a larger vocabulary showed a tendency for more success in map-
ping LTP words to referents. Together, these studies not only suggest that are HTP words treated 
as candidate object labels, but highlight how taking an individual-differences approach to study-
ing statistical learning may reveal differences in underlying processes (for additional discussion 
of the relationship between individual differences in statistical word learning and vocabulary 
development, see also  Lany & Saffran, 2010 ;  2011 ;  Lany, 2014 ). 

 Although  Mainela-Arnold and Evans (2014 ) have demonstrated that the ability to track 
TP information is related to phonological (but not semantic) processing in both children 
with and without DLD, to our knowledge there is only one study that has investigated how 
 statistical-sequential learning feeds into subsequent word learning with atypical populations.  Haebig, 
Saffran, and Weismer (2017 ) tested school-aged children (8 to 12 years old) with typical devel-
opment, ASD, and DLD on their ability to segment words from an artifi cial language, map words 
to referents without any pre-familiarization, and a combination of the word segmentation and 
word mapping tasks. Although children with DLD appeared to perform at chance on the word 
segmentation task, they benefi ted most from experience with the sequential statistics in the 
combination task. Children diagnosed with ASD who did not have any language impairments 
performed similarly to typically developing children on all tasks. However, ASD children with 
language impairment appeared to struggle with the word mapping task, but only if they did not 
get prior experience with the words in the artifi cial language. Contrary to expectations in the 
combination task, across all populations, children did not map statistically defi ned words (i.e., 
words with strong internal co-occurrence statistics) to referents more easily than nonwords 
(made of non-adjacent syllables from the corpus). One possible interpretation of these fi ndings, 
based on recent data from our lab (see above), is that mapping of the nonwords may be driven 
by sensitivity to syllable frequency information in the corpus, although this interpretation is 
speculative. 

 The use of these types of combined word segmentation plus word mapping tasks raises the 
question of whether word learning in non-ambiguous situations only unfolds in a two-stage 
process, where sounds are fi rst segmented (creating a meaningless proto-lexicon) and only then 
mapped to referents, or if the two processes can occur simultaneously.  Cunillera, Laine, Càmara, 
and Rodríguez-Fornells (2010 ) showed that adults can segment words from continuous speech 
and simultaneously map them to objects (see also  François, Cunillera, Garcia, Laine, & Rodriguez-
Fornells, 2017 ). Further, using a modifi ed statistical learning task, where infants were presented 
with statistically defi ned words (TP = 1.0) in short phrases,  Shukla, White, and Aslin (2011 ) 
showed that infants as young as 6 months can simultaneously extract words (TP = 1.0) and map 
them to visual referents when those words were aligned with prosodic cues, but fail to do so 
when statistics and prosody are misaligned. The authors argue that young infants may combine 
both statistical cues (e.g., TP) and native-language perceptual cues (e.g., prosody) to overcome 
simultaneous segmentation and mapping challenges. 

 The uncertainty with which labels and referents co-occur in natural environments poses a 
unique challenge for word learning ( Quine, 1960 ). Uncertainty can take many forms. For exam-
ple, the likelihood that labels and referents will co-occur can vary, and infants appear to be sensi-
tive to these co-occurrence statistics. For example,  Vouloumanos and Werker (2009 ) found that 
18-month-olds succeeded at learning label-referent pairs when labels were consistently applied 
to a single referent (100% of the time) and when labels were applied to a given referent the 
majority of the time (i.e., 80%). Infants failed to map label-referent pairs when the co-occurring 
probability was much lower (i.e., 20%). These results suggest that the strength of co-occurrence 
between labels and referents may be an important statistical cue for word learning. 
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 In natural learning environments, the presence of multiple labels and referents creates another 
source of uncertainty. A number of studies over the past decade have investigated how statistical 
cues may help children and adults overcome this challenge (for a review see  Yu & Smith, 2012a ). 
For instance, Smith and Yu (2008) presented 12- and 14-month-old infants with ambiguous 
naming events. On any given trial infants saw two referents and heard two labels; however, the 
mapping between individual labels and referents was not transparent. Infants could only discover 
label-referent pairs by comparing co-occurrences across trials (see   Figure 4.3 ), a phenomenon 
known as cross-situational statistical learning, and both age groups succeeded in the task. 
Furthermore, even when labels contain phonetic overlap (e.g.,  bon - ton ,  deet - dit ) – a common 
characteristic of words found in natural speech – infants at 12, 15, 17, and 20 months of age 

 

   Figure 4.3   Two trials from a cross-situational learning task. Dashed lines indicate possible relations between 
labels and referents. For instance, by tracking label-referent co-occurrence across trials infants 
could map /manu/ to the circular object. 

  Source:  The pictures from this example come from  Horst and Hout (2016 ), and the words come from Smith and Yu 
(2008).  
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appear to map referents to labels across trials ( Escudero, Mulak, & Vlach, 2016 ). These basic fi nd-
ings have been replicated in 5- to 7-year-olds ( Suanda, Mugwanya, & Namy, 2014 ) and with 
children diagnosed with ASD ( McGregor, Rost, Arenas, Farris-Trimble, & Stiles, 2013 ).                 

 Individual-differences research suggests that cross-situational statistical learning may be 
related to other measures of cognitive and language development in typically developing 
children. For example,  Scott and Fisher (2012 ) found that while 30-month-olds with larger 
vocabularies successfully mapped both transitive and intransitive verbs to actions across situa-
tions, infants with smaller vocabularies were only able to map the intransitive verbs, suggesting 
that cross-situational statistical learning abilities may be related to vocabulary development. In 
another study,  Smith and Yu (2013 ) used a block design to test how 12- and 14-month-olds’ 
attentional patterns affected cross-situational statistical learning and found that while learners 
and non-learners did not differ in how much attention they paid during training (differing from 
a previous report by  Yu & Smith, 2011 ), learners had signifi cantly larger receptive and productive 
vocabularies when compared to non-learners. 

 Using a similar approach,  Vlach and Johnson (2013 ) explored the role of memory in cross-
situational statistical learning with 16- and 20-month-olds, by presenting half of the label-referent 
pairs in a consecutive manner, and the other half interleaved across blocks (see   Figure 4.4 ). 
Twenty-month-olds learned both the consecutive and interleaved pairs, whereas 16-month-olds 
only learned pairs presented in consecutive order. Neither attentional patterns nor vocabulary 
size predicted learning. In a follow-up study, designed to examine the relationships among 
age, receptive vocabulary, and recognition memory in cross-situational statistical learning,  Vlach 
and DeBrock (2017 ) tested children between 22 and 66 months of age. They found that while 
vocabulary size and recognition memory both predicted learning, recognition memory was a 
stronger predictor of performance. Child age was not predictive of learning. Together these stud-
ies suggest that cross-situational statistical learning abilities may be related to the development of 
both language and non-linguistic cognitive skills. 

 Smith, Yu, and collaborators ( Pereira, Smith, & Yu, 2014 ;  Smith, Yu, & Pereira, 2011 ;  Smith, Yu, 
Yoshida, & Fausey, 2015 ; Yurovsky, Smith, & Yu, 2013) have proposed a new approach for fram-
ing the uncertainty problem under natural contexts. By taking infants’ egocentric vision into 
account (using lightweight head-mounted cameras), researchers have begun to understand how 

 

   Figure 4.4   An example of the type of block design used by  Vlach and Johnson (2013 ). On each block, one 
pair is always repeated consecutively across trials (massive presentation), and the other pair is 
presented once in each block (interleaved presentation). 

  Source:  The pictures from this example come from  Horst and Hout (2016 ).  
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cross-situational statistical learning becomes constrained by infants’ own interactions with the 
world. For instance, 16- to 18-month-old infants disambiguate visual scenes in the laboratory 
by holding and looking at only one object at a time, and their parents, in turn, often name the 
object during these optimal learning moments, promoting word learning ( Yu & Smith, 2012b ). 
Further, even in highly cluttered natural visual and auditory learning environments, a limited set 
of objects fi ll the infant’s visual fi eld during specifi c activities (e.g., table, shirt, chair, and bowl 
during meal time) ( Clerkin, Hart, Rehg, Yu, & Smith, 2017 ). These more constrained contexts 
offer ideal word learning opportunities, and indeed many of these activity-specifi c words are 
found in infants’ early vocabularies (see also  Bergelson & Aslin, 2017 ;  Roy, 2009 ). Chapter 7 (this 
volume) delivers a detailed analysis of this research and its insightful advancements.  

  Learning rudimentary grammar  

 In addition to discovering sounds in language, fi nding words in speech, and mapping words to 
meaning, infants also face the challenge of learning the grammatical patterns in their native lan-
guage. For example, not only do infants need to learn syntactic categories (e.g., which words are 
nouns, verbs, etc.), but they also need to learn how relational categories (e.g., subject, object) are 
ordered in their native language (e.g., is their language a subject-object-verb (SOV) language or 
a subject-verb-object (SVO) language?). For example, infants need to discover how past, present, 
and future tenses are used across non-adjacent (or long-distance) sequences (e.g.,  Tomorrow  he  will  
work; she  is  play ing ), where there is an intervening element that is often irrelevant to the tense 
marking (e.g.,  he  and  play  from the examples above). Importantly, learning grammar requires 
infants to be able to generalize to novel exemplars (e.g., she  is  glerp ing ). Research has shown 
that infants can track multiple forms of statistical information (e.g., frequency, co-occurrence, 
sequential statistics, non-adjacent dependencies, etc.) and can use this information to solve many 
of these higher-order grammatical challenges found in language. 

 Early attempts to investigate the role of statistical regularities in the acquisition of rudimen-
tary grammar were focused primarily on how infants learn word order patterns. Although in 
some languages word order is not particularly relevant (e.g., Turkish, Farsi), in other languages 
(e.g., English, Dutch) the placement of words can signifi cantly affect the meaning of sentences 
(e.g.,  I had my car cleaned  vs.  I had cleaned my car ). In one study,  Gómez and Gerken (1999 ) exposed 
12-month-old infants to a 2-minute familiarization with an artifi cial language generated by a 
fi nite-state grammar (see   Figure 4.5 ), where some word sequences were more predictive than 
others. At test, not only were infants able to discriminate grammatical from ungrammatical 
strings based on their predictiveness, they were also able to generalize the learned grammati-
cal patterns to novel exemplars (see  Gerken, 2006 , for evidence that the specifi c structure of 
the distributional information can lead to broad versus narrow generalization of grammatical 
patterns). Further, using a somewhat simpler design, Marcus and colleagues ( Marcus, Vijayan, 
Rao, & Vishton, 1999 ) have demonstrated that infants have the ability to generalize abstract 
“rule-like” grammatical patterns by 7 months.           

 Statistical learning is a dynamic process – much as the output of word segmentation can be 
the input for word learning ( Graf Estes et al., 2007 ;  Hay et al., 2011 ), recently segmented words 
also feed into learning about word order.  Saffran and Wilson (2003 ) presented 12-month-old 
infants with an artifi cial language where words (TPs within words were 1.0, while TPs across 
word boundaries were 0.25) were organized according to a simple fi nite-state grammar, and 
the infants were tested on their ability to discriminate novel grammatical from ungrammatical 
strings. In order for infants to learn which word orders were permissible in the language, they 
fi rst had to track TP information to discover which sound sequences formed words. Critically, 
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VOT

PEL

PEL

TAM RUD

RUD

TAM

   Figure 4.5   Finite-state grammar used by  Gómez and Gerken (1999 ). Strings start on the far left and pro-
ceed through the system in the direction of the arrows (e.g., VOT PEL JIC RUD TAM RUD 
represents a grammatical string). 

  Source:   Gómez and Gerken (2000 ).  

the TP between syllables was identical in both sentence types, and so they could not be dis-
criminated based on TP information alone. Results showed that infants were able to differentiate 
grammatical versus ungrammatical strings, suggesting that their ability to track TPs across syl-
lables to fi nd words subsequently allowed them to track word order information. 

 Infants’ sensitivity to distributional properties in grammatical relations might also help them 
learn abstract syntactic categories (e.g., determiners, adjectives, nouns, verbs). For example, if 
English-learning children learn that determiners  the  and  a  precede nouns but not verbs, whereas 
auxiliaries like  was  and  is  precede verbs but not nouns, then they should be able to make infer-
ences about the syntactic categories of novel words. Thus, learning abstract syntactic categories 
may play an important role in grammatical development because they can support generaliza-
tion to new utterances. Corpus analyses reveal that the same syntactic categories tend to appear 
in highly overlapping distributional contexts, or “frequent frames” ( Chemla, Mintz, Bernal, & 
Christophe, 2009 ;  Mintz, 2002 ;  2003 ); however, learning those categories by tracking distri-
butional information alone can be very diffi cult for infants ( Gerken, Wilson, & Lewis, 2005 ; 
 Gómez & LaKusta, 2004 ; but see  Lany & Saffran, 2011 ). 

 Importantly, in natural languages, words and their syntactic categories are marked not only by 
distributional cues but also by phonological and semantic cues. For instance, in English, nouns 
tend to both have a strong-weak stress pattern and occur after determiners  the  and  a . To inves-
tigate the role of correlated cues in the acquisition of syntactic categories, a number of studies 
have used an  aX bY  type of artifi cial language that consists of nonsense word categories  a ,  b  
(e.g., similar to determiners  the  and  a ) and categories  X ,  Y  (e.g., similar to categories like nouns 
and verbs). In these artifi cial grammars,  a  category is paired with  X , and  b  category is paired 
with  Y , but not vice versa, similar to the types of co-occurrence relationships described above 
for English syntactic categories. For example, using an  aX bY  paradigm,  Gómez and LaKusta 
(2004 ) found that 12-month-olds were able to form categories by associating the distributional 
information of  a  and  b  words with a particular phonological feature of  X  and  Y  words (i.e.,  X  
words were monosyllabic and  Y  words were disyllabic). In another study, Lany and colleagues 
(2017) found that at 15 months, infants’ ability to track these types of correlated cues in artifi cial 
language materials is related to individual differences in how effi ciently infants process familiar 
words in their native language. 
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 In another series of experiments,  Lany and Saffran (2010 ) sought to investigate whether these 
types of correlated cues also facilitate the grouping of words into categories and subsequent 
mapping of those words to different categories of referents (e.g., animals vs. vehicles). Twenty-
two-month-old infants were familiarized with an  aX bY  language where either  a  words ( ong  
and  erd ) predicted two syllable words (e.g.,  coomo ,  loga ) and  b  words ( atl  and  ush ) predicted one 
syllable words (e.g.,  deech ,  jic ), or a control condition where  a  and  b  words each predicted one and 
two syllable words. Instead of testing infants on novel grammatical versus ungrammatical strings, 
infants went directly into a label-referent mapping task where  aX  sequences were paired with 
referents from one lexical category (e.g., animals) and  bY  sequences were paired with referents 
from another lexical category (e.g., vehicles). Infants learned individual referents and lexical 
categories when distributional and phonological cues were correlated (i.e., co-occurrence and 
number of syllables), and successfully generalized untrained  aX  and  bY  sequences to novel exem-
plars of the referent categories. Infants failed to learn when the cues were not correlated during 
familiarization even though they received the same experience during label-referent training. In 
a subsequent study,  Lany and Saffran (2011 ) found that infants with more advanced vocabulary 
and grammatical skills (as measured by parental report) could use distributional cues alone to 
identify a novel referent from the learned category (i.e., upon hearing an  a  word infants would 
look at the novel exemplar of an animal), but they could not use phonological cues alone (i.e., 
when hearing an untrained two syllable word they failed to look at the novel animal exemplar). 
The reverse pattern was found for infants with less advanced vocabulary and grammatical skills 
( Lany & Saffran, 2011 ; see also  Lany, 2014 ). This set of fi ndings suggests that infants track correla-
tions among distributional, phonological, and semantic information when learning words. They 
also indicate that these cues might be weighted differently depending on individual differences 
in infants’ vocabulary and grammatical development. 

 Many of the studies that we have reviewed thus far have focused on infants’ and children’s 
ability to track adjacent dependencies (e.g., units that co-occur without any intervening infor-
mation). However, natural languages also contain many sequential but non-adjacent depend-
encies, where the intervening information between co-occurring elements can vary (e.g.,  is  
writ ing ,  is  read ing ,  is  sing ing ). Infants appear to be able to learn these types of morphosyntactic 
non-adjacent dependencies if there is suffi cient variability in the intervening element (e.g., 
AX 1 B, AX 2 B, . . ., AX 24 B), but fail to learn when the intervening element only takes on a limited 
number of forms ( Gómez, 2002 ; but see  Vuong, Meyer, & Christinsen, 2016 , for confl icting fi nd-
ings with adults). When variability in the intervening elements is low, learners may track indi-
vidual items (tokens) in the input, but may fail to appreciate subtler patterns that occur between 
item types (e.g., the grammar). Conversely,  Gómez (2002 ) suggests that high variability in the 
intervening elements decreases the co-occurrence statistics between adjacent elements, causing 
infants to redirect their attention from adjacent to more informative non-adjacent dependen-
cies. Conceptual replications of this work, with both artifi cial and natural languages, have found 
that infants as young as 15 months appear to be sensitive to non-adjacent dependencies (e.g., 
 Gómez & Maye, 2005 ;  Lany & Gómez, 2008 ;  van Heugten & Johnson, 2010 ). Further, although 
12-month-olds appear to struggle learning non-adjacent dependencies, they appear to be able 
to use the adjacent relations to learn non-adjacent ones ( Lany & Gómez, 2008 ). 

 Some languages also contain phonological non-adjacent dependencies. Unlike in English, in 
Turkish, vowels within a word tend to agree in their place of articulation, a feature called vowel 
harmony. For instance, the word for child ( çocuk ) is legal in Turkish because the /o/ and /u/ are 
both back vowels. Similarly,  kedi  (cat) contains all front vowels. Except for in borrowed words 
(e.g.,  selam , “hello”, borrowed from Arabic), front and back vowels do not typically occur in the 
same words. A recent study by  Mintz, Walker, Welday, and Kidd (2018 ) found that 7-month-old 
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English-learning infants can use vowel harmonic non-adjacent dependencies to segment words 
from fl uent speech, suggesting that even without exposure to vowel harmony in their native 
language, infants are sensitive to these types of phonological non-adjacent dependencies early 
in life. 

 Although there are a number of studies that have explored individual differences in learn-
ing rudimentary grammar, including non-adjacent dependencies, and grammatical profi ciency 
in adolescents and adults (e.g., Erickson, Kaschak, Thiessen, & Berry, 2016;  Hsu, Tomblin, & 
Christiansen, 2014 ;  Misyak & Christiansen, 2010 ;  Misyak, Christiansen, & Tomblin, 2010 ;  Plante, 
Gómez, & Gerken, 2002 ), to our knowledge, these relationships have not been as extensively 
explored in infancy and early childhood. On reason for the lack of focus on individual differ-
ences is because developmental studies on statistical learning have tended to use tasks that meas-
ure group level effects, where the aim has been to demonstrate that children of a certain age are 
able to learn certain types of statistical patterns. As interests have moved beyond proof of ability 
demonstrations, to exploring how individual differences in statistical learning map onto other 
types of perceptual and/or cognitive functioning, additional methodological considerations are 
necessary (e.g., see  Siegelman, Bogaerts, & Frost, 2017 , for pitfalls and solutions in studying indi-
vidual differences in statistical learning). Certainly, the work by Lany and colleagues ( Lany, 2014 ; 
 Lany & Saffran, 2010 ,  2011 ; Lany et al., 2017;  Shoaib et al., 2018 ) provides an exception to this 
focus on group level effects (see above). Further, while some recent individual-differences work 
by  Kidd and Arciuli (2016 ) has found that children’s ability to track statistics in a visual task is 
related to their grammatical knowledge (see also work by  Conway, Pisoni, Anaya, Karpicke, and 
Hennqing (2011 ) on children with cochlear implants), much less is known about how tracking 
statistics in linguistic input is related to grammatical development. There have, however, been a 
few studies looking at individual differences in non-adjacent dependency learning in atypical 
populations. For example, a recent study by  Iao, Ng, Wong, and Lee (2017 ) demonstrated that 
Cantonese-speaking children with DLD show diffi culties in learning non-adjacent dependen-
cies. Similarly,  Kerkhoff and colleagues (2013 ) found that 18-month-olds at familial risk for 
dyslexia have defi cits in non-adjacent dependency learning, perhaps accounting for the char-
acteristic delays in grammatical and phonological processing seen in children with dyslexia. 
Although these studies have not explicitly explored the role of working memory capacity in the 
learning of non-adjacent dependencies, the two are likely related ( Santelmann & Jusczyk, 1998 ; 
but see  Hsu et al., 2014 ). Further research on individual differences in rudimentary grammar 
learning in infancy and early childhood may strengthen our understanding of the variability 
seen in early grammatical development.  

  Conclusions  

 In this chapter, we have reviewed some of the extant evidence that has accumulated, especially 
over the past 20 years, suggesting that infants are equipped with sophisticated computational 
abilities and can use them to learn many of the types of structures found in natural languages. 
Although the studies that we have presented have focused exclusively on infants’ ability to track 
statistics in linguistic input, it is important to note that these abilities are not specifi c to either 
humans or speech. For example, evidence for distributional learning has been observed in other 
acoustic domains (e.g., music:  Ong, Burnham, & Stevens, 2017 ), sensory modalities (e.g., vision: 
 Duffy, Huttenlocher, & Crawford, 2006 ), and taxa (e.g., rats:  Pons, 2006 ). Statistical-sequential 
learning has been demonstrated with visual ( Fiser & Aslin, 2001 ;  Kirkham, Slemmer, & Johnson, 
2002 ), tactile ( Conway & Christiansen, 2005 ), and non-speech auditory stimuli (e.g.,  Hay & 
Saffran, 2012 ;  Saffran, 2003 ;  Saffran, Johnson, Aslin, & Newport, 1999 ), and in a number of 
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species (rats:  Toro & Trobalón, 2005 ; cotton-top tamarins:  Hauser, Newport, & Aslin, 2001 ; and 
songbirds:  Chen & ten Cate, 2015 ; Takashi, Yamada, & Okanoya, 2010). Finally, a number of 
different species demonstrate evidence of being able to learn non-adjacent dependency rela-
tions (songbirds:  Chen & ten Cate, 2017 ; primates:  Newport, Hauser, Spaepen, & Aslin, 2004 ; 
 Sonnweber, Ravignani, & Fitch, 2015 ) and rudimentary grammar (cotton-top tamarins:  Fitch & 
Hauser, 2004 ;  Saffran, Hauser, Seibel, Kapfhamer, Tsao, & Cushman, 2008 ; songbirds:  Gentner, 
Fenn, Morgaliash, & Nusbaum, 2006 ), although not all non-human animals appear to be able 
to generalize grammatical patterns to new exemplars (for a review see  ten Cate & Okanoya, 
2012 ). The degree of commonality underlying all of these fi ndings remains unknown; however, 
modeling (e.g.,  Perruchet & Vintner, 1998 ;  Thiessen & Pavlik, 2013 ;  Thiessen, 2017 ) and neu-
roimaging studies (for a review, see Schapiro & Turk-Browne, 2015) are beginning to answer 
some of these questions. 

 Although we have provided ample evidence that infants can track statistical regularities in the 
lab, we would be remiss to ignore that null fi ndings are also prevalent in the fi eld. For example, 
within the segmentation literature, infants appear to have a diffi cult time tracking statistics across 
words with variable length (e.g., Johnson & Tyler, 2010, but see Mersad & Nazzi, 2012), or if 
they have the expectation that words are one length (e.g., two syllables) and then the words in 
the speech stream are another length (e.g., three syllables; Lew-Williams & Saffran, 2012). Fur-
ther, according to two recent meta-analyses ( Cristia, 2018 ; see also Lewis et al., 2018), the evi-
dence for distribution learning of phoneme categories has not proven to be very robust, partially 
because a number of researchers have failed to replicate the original Maye, Werker, and Gerken 
(2002) study, and of the studies that have replicated it, many have had relatively small effect sizes. 

 Null effects and failure to replicate are perhaps not particularly surprising given that infant 
methodologies are sometimes fragile, as infants are typically provided with very short periods of 
exposure (e.g., often ~ 2 to 10 minutes) to the statistical structures they are subsequently tested 
on, only a subset of infants may show learning in a given study, and small sample sizes limit sta-
tistical power. Indeed, in one recent meta-analysis by Black and Bergmann (2017), incorporating 
68 experiments, and data from 1,454 infants, there was an overall signifi cant but small effect size 
across studies examining infants’ ability to track TP information in continuous speech. These 
results suggest that although it is highly likely that infants do possess these computational abili-
ties, there is a need for increasing the power and robustness of statistical learning studies. 

 Some of these replication issues may also derive from the fact that much of the develop-
mental work on statistical learning has relied exclusively on offl ine measures, which typically 
measure novelty versus familiarity preferences based on looking time differences during a post-
familiarization phase. Kuppuraj and colleagues (  Kuppuraj, Duta, Thompson, & Bishop, 2018) 
argue that these offl ine measures may confound effects of encoding and memory, use testing 
procedures that may interfere with the statistics of the initial encoding, and fail to capture how 
statistical regularities are tracked over time. Although online measures have been successfully and 
reliably used to study statistical learning in adults (e.g., Batterink & Paller, 2017; Kuppuraj et al., 
2018; Misyak, Christiansen, & Tomblin, 2010), many of the common forms of infant method-
ologies do not lend themselves well to collecting online measures (for an exception see Romb-
erg & Saffran, 2013). Finally, large-scale, multi-lab replication efforts, such as those outlined in 
the various ManyBabies projects (e.g., Frank et al., 2017), will ultimately help researchers to 
better understand the robustness of a variety of developmental phenomena, including statistical 
learning. 

 Although laboratory studies have revealed a great deal about infants’ computational abilities, 
they do not demonstrate that infants actually use these abilities in the service of learning lan-
guage. And indeed, given currently available methodology, proving this relationship will likely 
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be quite diffi cult. Throughout this chapter, however, we have reviewed studies exploring how 
individual differences in statistical learning might be related to individual differences in language 
profi ciency, in both typical and atypical populations. While most of this work does not provide 
direct evidence that statistical learning drives language acquisition, and indeed we would never 
claim that statistical learning is the only avenue through which infants learn language, it does 
support the hypothesis that statistical learning and language learning may be related. Further, 
dissociations across different atypical populations (e.g., relatively intact language and statisti-
cal learning abilities in infants with Williams Syndrome ( Cashon et al., 2016 ), but relatively 
impaired language and statistical learning in infants with DLD (  Evans et al., 2009)) also support 
the hypothesis that statistical learning and language acquisition may be interconnected. 

 Given the evidence for a connection between statistical learning and language learning it is 
not surprising that there are a number of recent recommendations for interventions for clinical 
populations that build on statistical learning approaches. While some interventions have relied 
solely on graded approaches, where training begins with simplifi ed input that gradually increases 
in complexity, those built on statistical learning approaches have emphasized the importance 
of implicitly providing patients with the types of variability and complexity found in natural 
language input from the outset (e.g.,  Alt, Meyers, & Ancharski, 2012 ). Consistent with this idea, 
Plante and colleagues (  Plante et al., 2014) found that the variability of exemplars used by clini-
cians, rather than the number of repetitions of a single token, helped children with DLD learn 
grammatical morphemes (e.g., plural marker  s , past tense  ed ) in a conversational recasting task 
(see also Leonard & Deevy, 2017). Researchers and clinicians should continue to consider inter-
ventions aimed at helping children extract statistical patterns in the input as a potential fi rst step 
in improving language outcomes in vulnerable populations. 

 In addition to individual-differences research, another approach to addressing the question of 
whether and how infants use their computational abilities for language learning outside the labora-
tory involves presenting infants with more naturalistic learning challenges. In our lab, we have taken 
a number of approaches to increase the ecological validity of our measures. First, we tend to study 
statistical learning using complex natural language materials (i.e., Italian: Karaman & Hay, 2018; Hay 
et al., 2011; Pelucchi et al., 2009a, 2009b). Further, we have explored how statistical learning feeds 
into subsequent word learning (e.g., Hay et al., 2011; Shoaib et al., 2018) and how statistical learn-
ing might support long-term memory in infants (e.g., Karaman & Hay, 2018). Finally, we are cur-
rently examining both the robustness and specifi city of statistical learning, by testing infants in more 
naturalistic/noisy listening environments. As we are able to demonstrate that infants’ computational 
abilities stand up to the challenges inherent to language learning outside of the lab, we will be able 
to further elucidate the potential role for statistical learning in language development.  

   Note 

    1  In order to lower the TP of the LTP words in both the forward and the backward direction, both the 
fi rst and second syllables of the LTP words were presented throughout the corpus. Thus, while infants 
heard the syllables of the HTP words a total of 18 times, they heard the syllables of LTP words a total 
of 54 times each – 18 times in the LTP words themselves and then an additional 36 times throughout 
the corpus.   
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