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Abstract
Statistical regularities in linguistic input, such as transitional probability and phonotactic probability, have been shown to promote
speech segmentation. It remains unclear, however, whether or how the combination of transitional probabilities and subtle
phonotactic probabilities influence segmentation. The present study provides a fine-grained investigation of the effects of such
combined statistics. Adults (N = 81) were tested in one of two conditions. In the Anchor condition, they heard a continuous
stream of words with small differences in phonotactic probabilities. In the Uniform condition, all words had comparable
phonotactic probabilities. In both conditions, transitional probability was stronger in words than in part-words. Only participants
from the Anchor condition preferred words at test, indicating that the combination of transitional probabilities and subtle
phonotactic probabilities may facilitate speech segmentation. We discuss the methodological implications of our findings, which
demonstrate that even small phonotactic variations should be accounted for when investigating statistical speech segmentation.
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Learning a new language involves discovering how sound
sequences combine to make words. For a novice learner, this
can be challenging, as words are not typically produced in
isolation (Brent & Siskind, 2001), and unlike written lan-
guage, spoken language does not have reliable pauses be-
tween words. Fortunately, there are a number of probabilistic
cues, including transitional probability (TP) and phonotactic
probability (PP) that may work together to help learners over-
come the segmentation problem (Johnson, 2016; Jusczyk,
2002; Onnis et al., 2005). The current study further investi-
gates the combined effects of TP and PP on speech segmen-
tation and highlights the methodological implications of
overlooking PPs when studying statistical speech

segmentation, which is often the case in both classical and
more recent studies.

Transitional probabilities (TPs) are a type of sequential
statistic found between words’ segments (e.g., syllables) that
can be used to predict the occurrence of the next or the previ-
ous segment (Aslin et al., 1998; Hay et al., 2011). For in-
stance, given sufficient experience with English, one might
learn that in the sequence pretty#baby, the chance of pre being
followed by ty is greater than the chance of ty being followed
by ba, signaling a word boundary. Infants and adults are able
to track differences in TPs to find word boundaries in contin-
uous speech (Saffran, Aslin, et al., 1996a; Saffran et al., 1997).
Phonotactic probabilities (PPs), on the other hand, are posi-
tional statistics based on the frequency of phonological seg-
ments in given positions within words of a language
(Vitevitch & Luce, 2004). For example, in the same sequence
pretty#baby, the English PP of the word pretty (≈ 0.0440) is
higher than the PP of the word baby (≈ 0.0050), which, in turn,
is higher than the PP of the part-word ty#ba (≈ 0.0022).
Differences in PPs between words and/or part-words have
also been shown to signal word boundaries and promote
speech segmentation for both infants and adults (Jusczyk
et al., 1994; Mattys & Jusczyk, 2001; Mattys et al., 1999).

To study statistical speech segmentation, researchers usu-
ally combine made-up words to create continuous speech
streams. The very nature of made-up words implies that they
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have TPs = 0 in the participants’ native language. For in-
stance, the syllables from the sequence pretty#baby could be
rearranged to create the made-up sequence tyba#preby. Native
TP knowledge will not aid segmentation of this made-up se-
quence, but given sufficient exposure, participants can track
the new TPs and use it to find word boundaries. Artificial
languages have been successful in precisely controlling TP
information in their made-up words; however, this level of
strict control is not automatically extended to PP. For instance,
in the same made-up sequence (tyba#preby), the PP of the
word preby is much higher (≈ 0.0391) than the PP of the
part-words ba#pre (≈ 0.0110), which, in turn, is higher than
the word tyba (≈ 0.0022). If an artificial language has system-
atic PP differences among its’ words and/or part-words, par-
ticipants’ native PP knowledge may affect segmentation, re-
gardless of TP information (Finn & Hudson Kam, 2008;
Mersad & Nazzi, 2011). Made-up words in statistical learning
studies usually have legal phonotactics (e.g., Karaman &Hay,
2018; Mirman et al., 2008; Pelucchi et al., 2009). However,
variations in phonotactic probabilities are seldom controlled.
We expand this point and discuss its’ implications, with data,
in the Discussion.

At least two studies have focused on the combined effects
of TP and PP on speech segmentation. Finn and Hudson Kam
(2008) familiarized English-speaking adults to a continuous
stream of speech formed by disyllabic words that always had
strong TPs, but varying PPs. In one condition, words began
with legal consonant clusters (e.g., /kr/, /pl/as in, “kraft,” “plu-
ral”). In the other condition, words began with illegal clusters
(e.g., /tf/, /km/, /bt/). Despite TPs being stronger within words
(ranging from 0.25 to 1.0) than part-words (ranging from
0.035 to 0.143) in both conditions, only participants who
heard the speech with legal clusters preferred wordsmore than
part-words at test. These results show that adults combine TP
information learned in the task with native PP knowledge
when segmenting novel speech. It also shows that segmenta-
tion may be impaired if these statistics collide (i.e., strong TP,
but illegal PP).

In a more graded approach, Mersad and Nazzi (2011)
showed that probabilistic differences between words’ PPs
may serve as cues to word segmentation. French-speaking
adults were familiarized to either a uniform speech stream,
with all words having medium-low PPs, or to a non-uniform
speech stream, with some words having high and others hav-
ingmedium-low PPs. For both speech streams, TPwas always
stronger within words (1.0) than within part-words (0.5).
Interestingly, only participants exposed to the non-uniform
speech stream preferred words to part-words during test.
These results suggest that the PP contrasts can be combined
with TPs to promote segmentation on continuous speech. One
explanation offered by the authors is that words with stronger
PPs could have functioned as anchors that highlighted word
boundaries.

Support for this idea comes from research showing that
infants as young as 6 months old can use their knowledge of
highly familiar words, such as their own name and caregivers’
name, as anchors to find unfamiliar word boundaries in con-
tinuous speech streams (Bortfeld et al., 2005). In addition, by
taking advantage of anchors, infants can segment speech
streams with more challenging structures, such as ones with
varying word length (Mersad & Nazzi, 2012). In the adult
literature, the presence of recently learned words in the speech
stream facilitates speech segmentation (Cunillera et al., 2010)
and creates an anticipatory expectation for the words sur-
rounding the anchor (Cunillera et al., 2016).

The findings from Finn and Hudson Kam (2008) and
Mersad and Nazzi (2011) provide compelling evidence that
transitional and phonotactic statistics can affect speech seg-
mentation. However, both studies used very distinct phono-
tactics values (i.e., legal vs. illegal; high vs. medium-low). On
one hand, given the implicit nature of PP knowledge, large PP
variations may be necessary for the anchoring effect to be
observed. On the other hand, PP learning starts early in life.
Even before segmenting speech into words, 5-month-olds are
already sensitive to PP information from their native language
(Sundara & Breiss, 2020). In addition, both infants (Chambers
et al., 2003) and adults (Adriaans &Kager, 2017; Onishi et al.,
2002) can learn PPs from brief exposures to continuous
speech in the lab. Further, PPs have been shown to affect a
range of psychological phenomena, from memory to speech
production (Apel et al., 2006; Gathercole et al., 1999; Graf
Estes et al., 2016; MacKenzie et al., 2012; Zamuner, 2009).
Together, this evidence suggests that PP knowledge may be
robustly encoded in a manner that impacts speech segmenta-
tion (Onnis et al., 2005).

The present study aims to provide a more fine-grained test
of the combined effects of PP and TP on speech segmentation.
We conducted a conceptual replication of Mersad and Nazzi
(2011), but using smaller differences in words’ PPs. Again,
adults heard either a stream of speech with PP anchors or a
uniform stream of speech without anchors. If participants rely
on TP alone, we expect both speech streams to be segmented.
If participants rely on the combination of TP and PP anchors,
we expect those in the Anchor condition to demonstrate better
segmentation than those in the Uniform condition. By inves-
tigating the integration of transitional and phonotactic statis-
tics, our results will provide a more fine-grained understand-
ing of statistical language learning (Saffran, 2020).

Method

Participants

Eighty-one students (53 females, Mage = 22.59 ± 5.28 SD)
from Universidade Federal de São Carlos were recruited to
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participate through online postings. All participants were
native speakers of Brazilian-Portuguese and had typical
hearing, vision, and motor control, according to self-report.
The research was approved by the Institutional Review
Board of the Universidade Federal de São Carlos
(#1.484.847). Participants signed the informed consent form
and were randomly assigned to a condition. No compensa-
tion was provided for participation.

Stimuli

To ensure that PPs were tightly controlled, we focused on PP
information for initial stimulus selection. To do so, we used a
PP calculator especially designed for this study (Estivalet &
Dal Ben, n.d.). The calculator had two parts: the database
and the search engine (algorithm based on Vitevitch & Luce,
2004). The database was built from a comprehensive
Brazilian-Portuguese corpus (Estivalet & Meunier, 2015)
in five steps. First, grapheme-phone transcriptions were
perfomed automatically following the conventions set by
Barbosa et al. (2003). Second, all words from the corpus were
split into biphones. Third, the log (base 10) value of the fre-
quencies of each biphone by position was summed (e.g., sum
of /mæ/ frequency in the first position, in the second, and so
forth). Fourth, the log value (base 10) of total word frequen-
cies by number of biphones was summed (i.e., the total fre-
quency of words with one, two, three biphones, and so forth).
Finally, the biphones’ sums, which were calculated on the
second step, were divided by the words’ sums, calculated on
the fourth step. The quotient was the log-transformed PP of
biphones in Brazilian-Portuguese. Log transformations were
used because they better correlate with performance in lin-
guistic experiments than raw frequency (Vitevitch & Luce,
2004). The search engine worked in four steps—the reverse
of Vitevitch and Luce (2004). First, it took as input user-
specified log-transformed PPs (e.g., exactly 0.002 in the first
position, 0.003 in the second, and so forth), or PP ranges (e.g.,
0.002 or higher in the first position), for each desired biphone
position. Second, it searched the database for those PPs and
created a list of biphones by position. Third, it recombined
overlapping biphones by position (e.g., /pe/ in the first posi-
tion would be recombined with /em/ in the second position,
and with /mi/ in the third position to make /pemi/). Finally, it
returned the combinations that matched the user-specified
statistics.

Using the calculator, we selected six disyllabic pseudo-
words with consonant–vowel structure (CVCV) and with the
highest possible PPs before becoming words in Brazilian-
Portuguese. We labeled these six pseudo-words PP+. Then,
we recombined the biphones from PP+ pseudo-words to cre-
ate a second set of six pseudo-words that had slightly less
probable, but still high, PPs. We labeled these PP− (see
Table 1).

To ensure that both sets were very similar to actual words
from Brazilian-Portuguese, we calculated the mean number of
insertions, deletions, and substitutions needed to transform
PP+ and PP− words into their closest 20 phonetic neighbors
(i.e., Levenshtein Distance; Yarkoni et al., 2008). We used the
package vwr (Keuleers, 2013) for R (R Core Team, 2017) and
the same Brazilian-Portuguese corpus in these calculations
(Estivalet & Meunier, 2015; see Table 1). The analysis indi-
cated that both sets were very close to actual Brazilian-
Portuguese words (1.26 for PP+, 1.52 for PP−; the smaller
the number of operations, the closer the words were to
Brazilian-Portuguese) and to each other—difference of 0.26
mean operations.

We used disyllabic words, instead of trisyllabic ones, be-
cause it avoids possible confounding variations that arise from
recombining final + initial + middle syllables or middle + final
+ initial syllables of trisyllabic words (Mersad & Nazzi,
2011). We chose to use a CVCV structure because it is one
of the most common word structures in Brazilian-Portuguese
(Estivalet, 2018). Finally, we decided to use PPs over raw
biphone positional frequency (Mersad & Nazzi, 2011) be-
cause it provides a comparable measure across all biphones
for each stimulus (i.e., CV, VC, CV, in the first, second and
third position, respectively), it is a standard measure in psy-
cholinguistic research (Vitevitch & Luce, 2004), and it allows
for cross-linguistic comparisons (e.g., see Table 3).

When recombining these words to create continuous
speeches, we aimed to mimic, as closely as possible, the type
of artificial language used in many of the classic speech seg-
mentation experiments (Aslin et al., 1998; Saffran, Aslin,
et al., 1996a; Saffran et al., 1997). To rule out frequency of
repetition of test items as a confound, we created four
frequency-balanced languages, two for each condition (see

Table 1 Phonetic transcription (IPA), Phonotactic Probabilities (PP),
and Phonetic Levenshtein Distances (PLD20) of the pseudowords with
highest possible phonotactic probabilities (PP+) and their recombinations
(PP−)

PP+ a PP− b

IPA PP PLD20 IPA PP PLD20

dini [d ini] 0.0090 1.4 nipe [nipe] 0.0066 1.65

deta [deta] 0.0085 1 tadi [tad i] 0.0074 1.8

pemi [pemi] 0.0082 1.6 mide [mide] 0.0075 1

sute [sute] 0.0084 1.2 teba [teba] 0.0074 1.15

viko [viko] 0.0080 1.35 kosu [kosu] 0.0078 1.95

bara [bara] 0.0090 1 ravi [ravi] 0.0073 1.55

Mean 0.0085 1.26 Mean 0.0073 1.52

a Items with the highest possible PPs (before becoming words) in
Brazilian Portuguese.
b Items with slightly lower PPs, but that still had relatively high PP.
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Aslin et al., 1998 for advantages of using a frequency-
balanced language). All languages had six words (TP = 1.0).
Half of the words were presented 300 times (i.e., high-
frequency words) and half of the words were presented 150
times (i.e., low-frequency words). Words were concatenated
in a quasi-random order following two constraints. First, a
given word was never repeated in succession (e.g.,
nipenipe…). Second, high-frequency words were arranged
so that their part-words (TP = 0.5) were matched in frequency
with low-frequency words (i.e., they occurred 150 times
each). During both familiarization and test, each word lasted
for 696 ms, had a mean F0 of 220 Hz, and a mean intensity of
77 dB. Words were synthesized and concatenated, with co-
articulation, using the MBROLA synthesizer (Dutoit et al.,
1996) with the female Brazilian-Portuguese database br4.
Each language had a total duration of approximately 15 min
40 s (stimuli are available at: https://osf.io/s9thk/).

In the Anchor condition, both languages had words with
varying PPs in order to generate anchor effects. High-
frequency words from one of the languages (Language 2)
came from the PP+ set and had the highest possible PPs (M
= 0.0085, range from 0.0090 to 0.0080). In the other language
(Language 1), the high-frequency words came from the PP−
set and had slightly lower PPs (M = 0.0072, range from 0.0075
to 0.0066; see Table 2). The opposite was true for low fre-
quency words. Low frequency words in Language 2 came
from the PP− set and had slightly lower PPs (M = 0.0072)
than they did in Language 1 (M = 0.0085; PP+). Thus, the PP
difference between the highest and the lowest PP was 0.0024
during familiarization, for both languages. Furthermore, the
low-frequency words and the part-words used at test had sim-
ilar PPs in both languages. It was slightly higher for Language
1 (M= 0.0085 and 0.0086, respectively) and slightly lower for
Language 2 (M = 0.0072 and 0.0075, respectively).

In the Uniform condition, PPs were flattened for both
languages during familiarization (i.e., no anchors were
present). In one of the languages (Language 3), all words
(high and low frequency) had slightly lower (but still
high) PPs (M = 0.0072, range from 0.0066 to 0.0078;
PP− set). In Language 4, all words had the highest possi-
ble PP values (M = 0.0085, range from 0.0080 to 0.0090;
PP+ set; see Table 2). Thus, the PP difference between the
highest and the lowest PP during familiarization was
0.0012 for Language 3 and 0.0010 for Language 4. As a
consequence of the flattened PP distribution during famil-
iarization, part-words used at test had the highest possible
PPs in Language 3 (M = 0.0085), and slightly lower in
Language 4 (M = 0.0072).

During warm-up trials, before the test phase, four existing
words in Brazilian-Portuguese were contrasted with four nov-
el words (not used in the experiment)—that is, bola (ball), tela
(screen), cabo (cable), pato (duck) versus sibu, bafi, guvi,
tibo, respectively.

Procedure

The experiment consisted of three phases: familiarization, test,
and self-evaluation. The task was computer administrated
using PsychoPy2 (Peirce et al., 2019) and stimuli were played
on high-definition neutral headphones (AKG 740 powered by
Fiio E10K dac/amp) in a sound-attenuated room. At the be-
ginning of the experiment, before the familiarization phase,
music was played through the headphones at the same inten-
sity as the experimental stimuli (≈77 dB) and participants were
instructed to adjust the volume to a comfortable level. The
familiarization language was then played at the individually
selected volume. In the familiarization phase, participants
were told that they would hear a new language and were
provided with puzzles to play with while they were listening
(e.g., wood puzzles, slide puzzles, dexterity puzzle; Saffran
et al., 1997). They were not instructed about any aspect of
the language, nor were they instructed to pay attention to it.

After familiarization, participants were presented with four
warm-up trials during which they were instructed to select the
existing word in Brazilian-Portuguese compared with a novel
word, by pressing either 1 or 2 on an adapted keyboard. There
was a 500-ms pause between the two stimuli. In the following
test phase, participants were presented with 18 two-alternative
forced-choice trials that had the same structure as the warm-up
trials. There were six trials for each of the three words. During
each trial, participants heard one word (TP = 1) paired with a
part-word (TP = 0.5)—order of presentation was
counterbalanced across trials—and were instructed to select
the stimulus that sounded more like the language they just
heard.

Finally, during the self-evaluation phase, participants were
asked to estimate the percentage of the words they were able
to detect (between 0–25%, 25–50%, 50–75%, 75–100%), and
to inform how focused they were on the puzzles while listen-
ing to the new language (very focused, focused, poorly fo-
cused, not focused). After the experimental task, participants
completed a questionnaire including questions about their age,
native language, and whether they had any experience with
foreign languages.

Data analysis

The main dependent variable was the proportion of words
(versus part-words) selected during the test phase. To test
whether participants relied on TP alone or on a combination
of TP and PP anchors to segment the languages, the propor-
tion of words selected in each condition was tested against
chance (0.5) using classic and Bayesian t tests. All tests
against chance were one-sample, two-tailed, and Bayesian
tests had a default Cauchy prior (0, 0.707; Wagenmakers
et al., 2018). To test whether performance differed between
conditions, we used an independent-samples t test. We also
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tested correlations between the proportion of words selected,
self-evaluations of performance and focus on the task, and
experience with foreign languages. All analyses were per-
formed on JASP (JASP Team, 2018) and are available at
OSF (https://osf.io/s9thk/). A post hoc power analysis of the
Anchor condition, the one with results significantly different
than chance, revealed 99% of power to detect a true effect
(Faul et al., 2007).

Results

We found a significant difference in word selection across
conditions, t(79) = 2.613, p = 0.011, Cohen’s d = 0.581,
95% CI [0.035, 0.262], suggesting that information from TP
and PP anchors were combined during word segmentation
(see Fig. 1a). In the Anchor condition, words were selected
(M = 0.70, SD = 0.22) significantly above chance (0.5), t(39) =
5.661, p < .001, d = 0.895 [0.523, 1.259], with extreme evi-
dence in favor of a combined effect of TP and PP on word
selection, BFalternative = 11,446. Furthermore, there was no

significant difference between performance across language
versions (1 and 2), t(38) = 0.378, p = .707, d = −0.120
[−0.176, 0.121]. Participants were equally successful when
tested on target words with the highest phonotactics (PP+;
Language 1) or with slightly lower phonotactics (PP−;
Language 2). In addition, no significant correlations were
found between the proportion of words selected, self-
evaluation of performance and focus, or experience with for-
eign languages.

In contrast, in the Uniform condition, words were not se-
lected (M = 0.55, SD = 0.28) above chance, t(40) = 1.305, p =
.199, d = 0.204 [−0.107, 0.512], and no evidence was found
for the effects of TP alone on word segmentation, BFalternative
= 0.370. Nonetheless, a significant difference was found be-
tween language versions (3 and 4; see Fig. 1b), t(39) = −3.038,
p = .004, d = −0.949 [−1.519, −0.296]. Participants who heard
Language 3 did not select words above chance (M = 0.43, SD
= 0.23), t(20) = −1.197, p = .245, d = −0.261 [−0.693, 0.177],
BFalternative = 0.427. In contrast, participants that listened to
Language 4 selected words above chance (M = 0.68, SD =
0.27), t(19) = 2.936, p = .008, d = 0.656 [0.165, 1.134],

Table 2 Phonotactic Probabilities (PP), Frequency (Freq), and Transitional Probabilities (TP) of familiarization and test stimuli of Languages (L) from
Anchor and Uniform conditions (Cond)

Cond L Familiarization Test

Words PP Freq Words PP TP Part-words PP TP

Anchor 1 nipe [nipe] − 300 sute [sute] + 1.0 dini [d ini] + 0.5

tadi [tad i] − 300 viko [viko] + 1.0 deta [deta] + 0.5

mide [mide] − 300 bara [bara] + 1.0 pemi [pemi] + 0.5

sute [sute] + 150

viko [viko] + 150

bara [bara] + 150

2 sute [sute] + 300 nipe [nipe] − 1.0 teba [teba] − 0.5

viko [viko] + 300 tadi [tad i] − 1.0 kosu [kosu] − 0.5

bara [bara] + 300 mide [mide] − 1.0 ravi [ravi] − 0.5

nipe [nipe] − 150

tadi [tad i] − 150

mide [mide] − 150

Uniform 3 teba [teba] − 300 nipe [nipe] − 1.0 sute [sute] + 0.5

kosu [kosu] − 300 tadi [tad i] − 1.0 viko [viko] + 0.5

ravi [ravi] − 300 mide [mide] − 1.0 bara [bara] + 0.5

nipe [nipe] − 150

tadi [tad i] − 150

mide [mide] − 150

4 dini [d ini] + 300 sute [sute] + 1.0 nipe [nipe] − 0.5

deta [deta] + 300 viko [viko] + 1.0 tadi [tad i] − 0.5

pemi [pemi] + 300 bara [bara] + 1.0 mide [mide] − 0.5

sute [sute] + 150

viko [viko] + 150

bara [bara] + 150
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BFalternative = 5.875. In addition, a positive correlation was
found between the proportion of words selected and self-
evaluation of performance (rs = 0.634, p = 0.003).

The overall successful segmentation in the Anchor condi-
tion but not in the Uniform condition suggests that adults
combined information from TP and PP anchors to segment
the continuous speech. It is noteworthy that the flat PP distri-
bution in the Uniform condition created test items with unbal-
anced PPs (see Table 2). In this condition, phonotactic infor-
mation present during test may have led to word preferences
in one language version (Language 4), but not in the other
(Language 3). We return to these points in the Discussion.

Discussion

The present study investigated the combined effects of transi-
tional probabilities and phonotactic probabilities on speech
segmentation. Across two conditions, participants were ex-
posed either to artificial languages in which all statistically
defined words (TP = 1) had similar phonotactic probabilities
(i.e., Uniform condition) or to artificial languages in which
words had varying degrees of phonotactic probabilities (i.e.,
Anchor condition). If participants relied on TP alone, we ex-
pected similar segmentation performance for both conditions,
given that TP was always stronger in words (TP = 1) in com-
parison with part-words (TP = 0.5). On the other hand, if
participants relied on a combination of TP and PP, we expect-
ed segmentation to happen only in the Anchor condition.

The successful segmentation found in the Anchor condi-
tion, but not in the Uniform condition, suggests a combined
effect of TP and PP anchors on speech segmentation. These

results were found using very small PP differences between
words in the Anchor condition. Thus, we replicated Mersad
and Nazzi’s (2011) findings under more challenging circum-
stances and these results add support to the argument that
anchors play an important role in speech segmentation
(Bortfeld et al., 2005; Cunillera et al., 2010; Cunillera et al.,
2016; Mersad & Nazzi, 2011, 2012). Nonetheless, the sepa-
rate analysis of each speech stream from the Uniform condi-
tion indicates that PP effects may have extended to the test
phase. In this condition, PP distributions were flat during fa-
miliarization for both versions of the familiarization language.
Thus, participants could not have relied on PP anchors to find
word boundaries. However, as a side effect of having flat PPs
during the familiarization, words and part-words used during
test had unbalanced PPs. For one language (Language 3), part-
words had higher PPs than did words; for the other language,
words had higher PPs (Language 4). Thus, even if participants
did not segment the speech stream during familiarization, un-
balanced PP information during test could still affect perfor-
mance. Based solely on the PP information during test, par-
ticipants exposed to Language 4 should prefer words (higher
PP on words), but participants exposed to Language 3 should
not (lower PP on words), which is in accordance with our
findings. Furthermore, the positive correlation between per-
formance and self-evaluation found only in Language 4 might
be a further indication that participants were using PP infor-
mation recently presented in the test phase—a recency effect.
We did not expect these results because we assumed that the
small PP differences in our stimuli would only drive learning
after repeated exposure during the familiarization phase (at
least 150 repetitions of each word). However, it seems that
the limited experience with only six repetitions of each word

Fig. 1 a Proportion of word selection across conditions (Anchor and
Uniform). b Proportion of word selection across Languages 3 and 4,
from the Uniform condition. Empty dots represent individual

performance, and filled dots represent the mean performance for each
Condition (a) or Language (b). Point ranges indicate 95% confidence
intervals. Dashed lines indicate chance level (0.5)
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and part-word during the test was sufficient to drive partici-
pants’ preferences. Although unexpected, this is in line with
evidence showing that abrupt distinction between legal versus
illegal phonotactics at test affect preference, regardless of TP
information presented during familiarization (Finn & Hudson
Kam, 2008). Future research can prevent PP effects during test
by using the same set of test items across conditions (Adriaans
& Kager, 2017; Reber & Perruchet, 2003). It is worth noting,
however, that the higher the stimuli PPs, as in the current
study, the harder it is to balance PPs at both familiarization
and test—especially when differences in PP, as small as
0.0024, might affect performance, a point we return in the next
paragraphs.

Our findings also provide a note of caution for speech
segmentation researchers, who may overlook the impact that
subtle phonotactic differences in their experimental stimuli
might have on segmentation. Typically, statistical speech seg-
mentation researchers use counterbalanced speech streams to
control for any “general preferences for certain syllable
strings” (Saffran, Aslin, et al., 1996a, p 1928) across partici-
pants. Thus, it is assumed that all observed learning reflects
listeners sensitivity to TP information presented in the expo-
sure stream rather than participants’ previous knowledge of
their native language (such as phonotactics). However,
counterbalancing does not necessarily control for differences
in PP that, combined with TP, could transform words into
anchors.

The results from the present study suggest that PP differ-
ences as small as 0.0024 (highest PP minus the lowest [0.0090
− 0.0066], Anchor condition) between stimuli can be com-
bined with TP information to create anchors that promote
segmentation. Using this difference as a threshold, we con-
ducted a brief analysis of PPs from words, part-words, and
nonwords used in artificial languages from a number of
well-known statistical segmentation studies. Based on our
knowledge of the literature, we analyzed highly cited seminal
studies with infants and adults (Aslin et al., 1998; Saffran,
Aslin, et al., 1996a; Saffran, Newport, et al., 1996b; 1209,
5590, and 1389 citations, respectively1); one study that used
dissyllabic stimuli and a combination of TP and stress cues to
segmentation (Thiessen & Saffran, 2003; 607 citations); one
study that combined speech segmentation and word learning
(Estes et al., 2007; 491 citations); and one study published by
one of us (Hay & Saffran, 2012; 62 citations). For each study,
we first calculated PPs for each reported stimulus using
Vitevitch and Luce (2004) phonotactic calculator. Then, we
subtracted the lowest PP from the highest PP for each word
from the speech stream and between test items (words, part-
words, nonwords). All phonetic transcriptions, PPs, and cal-
culations are openly available at OSF (https://osf.io/s9thk/).

Overall, we found an average difference of 0.0082 across
studies’ speech streams (range from 0.0042 to 0.0199; see
Table 3), which is 3.4 higher than the 0.0024 difference from
our stimuli (Anchor condition). Even the smallest difference,
0.0042 (Estes et al., 2007; Experiment 2) is still almost twice
as high as the difference in our stimuli. This shows that, re-
gardless of counterbalancing, PP differences persist in speech
segmentation tasks. Such differences, combined with TP in-
formation, may have created PP anchors that highlighted word
boundaries and facilitated speech segmentation during
familiarization—as in our Anchor condition. Furthermore,
with the exception of the first experiment from Saffran,
Aslin, et al. (1996a), all test items also had systematic PP
differences. The overall mean difference was 0.0055 across
studies’ test phases (range from 0.0020 to 0.0090), 2.3 times
higher than the PP difference in the test phase of the Uniform
condition of our study (0.0024). Such differences could have
also driven word preferences during test.

Moreover, the effects of PP anchors in segmentation may
not be limited to artificial languages. With this in mind, we
also calculated PPs for one of the Italian languages used in a
number of statistical learning studies by Hay et al. (2011,
Corpus 2A; e.g., Karaman & Hay, 2018; Pelucchi et al.,
2009; Shoaib et al., 2018). This natural language controls for
critical TP information, but it is composed of meaningful and
grammatically correct phrases in Italian and is naturally pro-
duced by a native Italian-speaker (Hay et al., 2011). Again, we
used the PP calculator by Vitevitch and Luce (2004) to calcu-
late the English PPs for the Italian words, as participants were
native English-speakers. All phonetic transcriptions, PPs, and
calculations are openly available at OSF (https://osf.io/s9thk/).

We found an overall difference between PPs of 0.0120
(range from 0.0001 to 0.0617), which is 5 times higher than
the 0.0024 difference from our own stimuli. In addition, the
PPs follow a skewed distribution similar to word frequencies
distributions in natural languages (Fig. 2a; Kurumada et al.,
2013; Zipf, 1965). Most of the words had low PPs and few
words had very high PPs. When combined, they generate
phrases with highly variable PP information (see Fig. 2b),
which, in turn, may generate PP anchors that are likely to
support speech segmentation. Future corpus analyses could
be very informative on this matter.

The presence of PP differences in all the analyzed lan-
guages (artificial and natural) raises the possibility that differ-
ences in words’ PPs may have created anchors that helped to
promote speech segmentation in these studies. Thus, it is pos-
sible that learning that has been previously assumed to depend
solely on TPs may be a result, instead, of a combination of TP
and PP information. However, at least two important counter-
points should be noted.

First, our data, as inMersad and Nazzi (2011) and Finn and
Hudson-Kam (2008), come from adult participants and may
not reflect linguistic sensitivities in infants. On one hand,

1 All number of citations were retrieved from Google Scholar on December
12, 2020.
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Table 3 Differences between highest and lowest phonotactic probabilities and their range for each experiment of the analyzed studies

Study Expa Familiarization Test

Language A Language B Phonotactic difference

Phonotactic difference Phonotactic difference

High − Low Range High − Low Range High − Low Range

Present study 1 0.0024 0.0066, 0.0090 0.0024 0.0066, 0.0090 0.0011b *

2 0.0012 0.0066, 0.0078 0.0010 0.0080, 0.0090 0.0024c *

Saffran, Aslin, et al. (1996a) 1 0.0098 0.0064, 0.0162 0.0059 0.0046, 0.0105 0.0020 0.0066, 0.0086

2 0.0199 0.0032, 0.0231 0.0056 0.0046, 0.0102 0.0090 0.0032, 0.0122

Saffran, Newport, et al. (1996b) 1 0.0069 0.0053, 0.0122 ** ** *** ***

2 0.0100 0.0032, 0.0132 ** ** *** ***

Saffran et al. (1997) 1 0.0069 0.0053, 0.0122 ** ** 0.0056 0.0045, 0.0101

Aslin et al. (1998) 1 0.0090 0.0032, 0.0122 0.0056 0.0046, 0.0102 0.0090 0.0032, 0.0122

Saffran & Thiessen (2003) 1 0.0063 0.0020, 0.0083 ** ** 0.0063 0.0020, 0.0083

Graf Estes, Evans, Alibali, & Saffran (2007) 1 0.0165 0.0029, 0.0194 0.0080 0.0041, 0.0121 0.0038 0.0029, 0.0067

2 0.0042 0.0029, 0.0071 0.0057 0.0012, 0.0069 0.0036 0.0012, 0.0048

Hay & Saffran (2012) 1 & 3 0.0063 0.0020, 0.0083 0.0045 0.0066, 0.0021 0.0045 0.0066, 0.0021

a For the Present study, Exp signals conditions (1 = Anchor, 2 = Uniform).
bMean PP difference across test items from Languages 1 and 2 (A and B).
cMean PP difference across test items from Languages 3 and 4 (A and B).

*The range varies according to the Language being tested (see Table 2).

**Not used.

***Not described.

Fig. 2 aDistribution of phonotactic probabilities (PP) for words of Italian speech from Hay et al. (2011, Language 2A). b Phonotactic probabilities (PP)
of words from one sentence (8th) of the same speech
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adults’ extensive experience with their native language most
likely generates a richer phonotactic knowledge when com-
pared with infants’. On the other hand, phonotactic learning
begins very early in life, as early as 5 months of age (Sundara
& Breiss, 2020), and adults and infants may rely on similar
strategies to segment speech (Cunillera et al., 2010). Future
studies should extend this investigation to infants, which
could provide more insights into the role of PP anchors during
language development.

Second, PP differences may only function as anchors when
combined with strong TPs. For example, after being familiar-
ized with the Italian languages, infants readily segment words
with high TPs (1.0), but not words with low TPs (0.33; Hay
et al., 2011; Pelucchi et al., 2009); despite the fact that anchors
could have highlighted both types of words. In natural lan-
guages, TP values are usually much smaller than the absolute
1.0 used in most segmentation studies (Yang, 2004). Future
corpus analyses, experimental studies, and neurophysiological
measures (Cunillera et al., 2016) may provide better resolution
on the role of varying degrees of TP and PP combination on
word segmentation.

Furthermore, although we have focused on PP differences
in previously published studies, it may be even more informa-
tive for future analyses to explore whether differences in PPs
can account for the fact that numerous studies have failed to
replicate the original statistical learning findings and thus were
not published—file drawer problem (Black & Bergmann,
2017; Rosenthal, 1979).

In sum, we believe that our findings, together with those
from Mersad and Nazzi (2011), and the aforementioned ob-
servations about PPs in previous segmentation studies, make a
reasonable argument for the effects of PP anchors on speech
segmentation. In addition, the present study is, to our knowl-
edge, the first to investigate statistical learning with Brazilian-
Portuguese speakers, thus providing additional support for the
generality of statistical learning research.

Language learning is a complex process. Several statistical
cues have now been shown to play a role in speech segmen-
tation. Here, we present evidence that small variations in pho-
notactic probability can be combined with transitional proba-
bility information to impact speech segmentation. Our find-
ings provide a more nuanced understanding of the role PP
anchors play in speech segmentation and suggest that, in fu-
ture studies, we need to consider even subtle differences in PP
when selecting stimuli for speech segmentation research.

Open practices statement The data and materials for all ex-
periments are available at https://osf.io/s9thk/. None of the
experiments was preregistered.

CRediT statement Rodrigo Dal Ben: Conceptualization,
Methodology, Software, Investigation,Writing–Original draft
preparation. Débora de Hollanda Souza and Jessica F. Hay:

Conceptualization, Resources, Writing–Reviewing and
Editing, Supervision.

Declarations

Declarations of interest None.

References

Adriaans, F., & Kager, R. (2017). Learning novel phonotactics from
exposure to continuous speech. Laboratory Phonology: Journal of
the Association for Laboratory Phonology, 8(1), 12. https://doi.org/
10.5334/labphon.20

Apel, K., Wolter, J., & Masterson, J. (2006). Effects of phonotactic and
orthotactic probabilities during fast mapping on 5-year-olds’ learn-
ing to spell. Developmental Neuropsychology, 29(December 2015),
21–42. https://doi.org/10.1207/s15326942dn2901

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of
Conditional Probability Statistics by 8-Month-Old Infants.
Psychological Science, 9(4), 321–324. https://doi.org/10.1111/
1467-9280.00063

Barbosa, F., Pinto, G., Resende, F. G., Gonçalves, C. A., Monserrat, R.,
& Rosa, M. C. (2003). Grapheme-phone transcription algorithm for
a Brazilian Portuguese TTS. Computational Processing of the
Portuguese Language, 2721, 23–30. https://doi.org/10.1007/3-
540-45011-4_4

Black, A., & Bergmann, C. (2017). Quantifying infants’ statistical word
segmentation: A meta-analysis. In G. Gunzelmann, A. Howes, T.
Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual
Meeting of the Cognitive Science Society (pp. 124–129). Cognitive
Science Society. https://pdfs.semanticscholar.org/0807/
41051b6e2b74d2a1fc2e568c3dd11224984b.pdf

Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. (2005).
Mommy and me. Psychological Science, 16(4), 298–304. https://
doi.org/10.1111/j.0956-7976.2005.01531.x

Brent, M. R., & Siskind, J. M. (2001). The role of exposure to isolated
words in early vocabulary development. Cognition, 81(2), B33–
B44. https://doi.org/10.1016/S0010-0277(01)00122-6

Chambers, K. E., Onishi, K. H., & Fisher, C. (2003). Infants learn pho-
notactic regularities from brief auditory experience. Cognition,
87(2), B69–B77. https://doi.org/10.1016/s0010-0277(02)00233-0

Cunillera, T., Càmara, E., Laine, M., & Rodríguez-Fornells, A. (2010).
Words as anchors: Known words facilitate statistical learning.
Experimental Psychology, 57(2), 134–141. https://doi.org/10.1027/
1618-3169/a000017

Cunillera, T., Laine, M., & Antoni, R.-F. (2016). Headstart for speech
segmentation: a neural signature for the anchor word effect.
Neuropsychologia, 82, 189–199. https://doi.org/10.1016/j.
neuropsychologia.2016.01.011

Dutoit, T., Pagel, V., Pierret, N., Bataille, F., & van der Vrecken, O.
(1996). TheMBROLA project: Towards a set of high quality speech
synthesizers free of use for non commercial purposes. Proceeding of
Fourth International Conference on Spoken Language Processing.
ICSLP, 3, 1393–1396. https://doi.org/10.1109/ICSLP.1996.607874

Estes, K. G., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can
infants map meaning to newly segmented words? Psychological
Science, 18(3), 254–260. https://doi.org/10.1111/j.1467-9280.
2007.01885.x

Estivalet, G. L. (2018, November). Algoritmo de silabação e tonicidade:
inventário e frequências das sílabas e estruturas silábicas do
português brasileiro [Syllabation and tonicity algorithm: Inventory

Mem Cogn

https://osf.io/s9thk/
https://doi.org/10.5334/labphon.20
https://doi.org/10.5334/labphon.20
https://doi.org/10.1207/s15326942dn2901
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1111/1467-9280.00063
https://doi.org/10.1007/3-540-45011-4_4
https://doi.org/10.1007/3-540-45011-4_4
https://pdfs.semanticscholar.org/0807/41051b6e2b74d2a1fc2e568c3dd11224984b.pdf
https://pdfs.semanticscholar.org/0807/41051b6e2b74d2a1fc2e568c3dd11224984b.pdf
https://doi.org/10.1111/j.0956-7976.2005.01531.x
https://doi.org/10.1111/j.0956-7976.2005.01531.x
https://doi.org/10.1016/S0010-0277(01)00122-6
https://doi.org/10.1016/s0010-0277(02)00233-0
https://doi.org/10.1027/1618-3169/a000017
https://doi.org/10.1027/1618-3169/a000017
https://doi.org/10.1016/j.neuropsychologia.2016.01.011
https://doi.org/10.1016/j.neuropsychologia.2016.01.011
https://doi.org/10.1109/ICSLP.1996.607874
https://doi.org/10.1111/j.1467-9280.2007.01885.x
https://doi.org/10.1111/j.1467-9280.2007.01885.x


and frequencies of syllables and syllable structures in Brazilian
Portuguese]. XXVII Jornada Internacional Do Grupo de Estudos
Linguísticos Do Nordeste–GELNE. http://www.jornada27.gelne.
com.br/

Estivalet, G. L., & Dal Ben, R. (n.d.). An online calculator to compute
phonotactic and orthotactic probability, and phonologic and ortho-
graphic neighborhood densities for words and nonwords in
Brazilian-Portuguese. Unpublished instrument.

Estivalet, G. L., &Meunier, F. (2015). TheBrazilian Portuguese Lexicon:
An instrument for psycholinguistic research. PLOSONE, 10(12), 1–
24. https://doi.org/10.1371/journal.pone.0144016

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A
flexible statistical power analysis program for the social, behavioral,
and biomedical sciences. Behavior Research Methods, 39(2), 175–
191. https://doi.org/10.3758/BF03193146

Finn, A. S., & Hudson Kam, C. L. (2008). The curse of knowledge: First
language knowledge impairs adult learners’ use of novel statistics
for word segmentation. Cognition, 108(2), 477–499. https://doi.org/
10.1016/j.cognition.2008.04.002

Gathercole, S. E., Frankish, C. R., Pickering, S. J., & Peaker, S. (1999).
Phonotactic influences on short-term memory. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
25(1), 84–95. https://doi.org/10.1037/0278-7393.25.1.84

Graf Estes, K., Gluck, S. C.-W., & Grimm, K. J. (2016). Finding patterns
and learning words: Infant phonotactic knowledge is associated with
vocabulary size. Journal of Experimental Child Psychology, 146,
34–49. https://doi.org/10.1016/j.jecp.2016.01.012

Hay, J. F., Pelucchi, B., Estes, K. G., & Saffran, J. R. (2011). Linking
sounds to meanings: Infant statistical learning in a natural language.
Cognitive Psychology, 63(2), 93–106. https://doi.org/10.1016/j.
cogpsych.2011.06.002

Hay, J. F., & Saffran, J. R. (2012). Rhythmic grouping biases constrain
infant statistical learning. Infancy, 17(6), 610–641. https://doi.org/
10.1111/j.1532-7078.2011.00110.x

JASP Team. (2018). JASP (Version 0.9) [Computer software]. https://
jasp-stats.org/

Johnson, E. K. (2016). Constructing a proto-lexicon: An integrative view
of infant language development. Annual Review of Linguistics, 2(1),
391–412. https://doi.org/10.1146/annurev-linguistics-011415-
040616

Jusczyk, P.W. (2002). How infants adapt speech-processing capacities to
native-language structure. Current Directions in Psychological
Science, 11(1), 15–18. https://doi.org/10.1111/1467-8721.00159

Jusczyk, P. W., Luce, P. A., & Charles-Luce, J. (1994). Infants’ sensitiv-
ity to phonotactic patterns in the native language. Journal of
Memory and Language, 33(5), 630–645. https://doi.org/10.1006/
jmla.1994.1030

Karaman, F., & Hay, J. F. (2018). The longevity of statistical learning:
When infant memory decays, isolated words come to the rescue.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 44(2), 221–232. https://doi.org/10.1037/xlm0000448

Keuleers, E. (2013). vwr: Useful functions for visual word recognition
research. https://CRAN.R-project.org/package=vwr 41.

Kurumada, C., Meylan, S. C., & Frank, M. C. (2013). Zipfian frequency
distributions facilitate word segmentation in context. Cognition,
127(3), 439–453. https://doi.org/10.1016/j.cognition.2013.02.002

MacKenzie, H., Curtin, S., & Graham, S. A. (2012). 12-month-olds’
phonotactic knowledge guides their word-object mappings. Child
Development, 83(4), 1129–1136. https://doi.org/10.1111/j.1467-
8624.2012.01764.x

Mattys, S. L., & Jusczyk, P. W. (2001). Do infants segment words or
recurring contiguous patterns? Journal of Experimental Psychology:
Human Perception and Performance, 27(3), 644–655. https://doi.
org/10.1037/0096-1523.27.3.644

Mattys, S. L., Jusczyk, P. W., Luce, P. A., & Morgan, J. L. (1999).
Phonotactic and prosodic effects on word segmentation in infants.

Cognitive Psychology, 38(4), 465–494. https://doi.org/10.1006/
cogp.1999.0721

Mersad, K., & Nazzi, T. (2011). Transitional probabilities and positional
frequency phonotactics in a hierarchical model of speech segmenta-
tion. Memory & Cognition, 39(6), 1085–1093. https://doi.org/10.
3758/s13421-011-0074-3

Mersad, K., & Nazzi, T. (2012). When mommy comes to the rescue of
statistics: Infants combine top-down and bottom-up cues to segment
speech. Language Learning and Development, 8(3), 303–315.
https://doi.org/10.1080/15475441.2011.609106

Mirman, D., Magnuson, J. S., Estes, K. G., & Dixon, J. A. (2008). The
link between statistical segmentation and word learning in adults.
Cognition, 108(1), 271–280. https://doi.org/10.1016/j.cognition.
2008.02.003

Onishi, K., Chambers, K. E., & Fisher, C. (2002). Learning phonotactic
constraints from brief auditory experience. Cognition, 83(1), B13–
B23. https://doi.org/10.1016/S0010-0277(01)00165-2

Onnis, L., Monaghan, P., Richmond, K., & Chater, N. (2005). Phonology
impacts segmentation in online speech processing. Journal of
Memory and Language, 53(2), 225–237. https://doi.org/10.1016/j.
jml.2005.02.011

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R.,
Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2:
Experiments in behavior made easy. Behavior Research Methods,
51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y

Pelucchi, B., Hay, J. F., & Saffran, J. R. (2009). Statistical learning in a
natural language by 8-month-old infants.Child Development, 80(3),
674–685. https://doi.org/10.1111/j.1467-8624.2009.01290.x

R Core Team. (2017). R: A language and environment for statistical
computing [Computer software]. R Foundation for Statistical
Computing. https://www.r-project.org/

Reber, R., & Perruchet, P. (2003). The use of control groups in artificial
grammar learning. The Quarterly Journal of Experimental
Psychology Section A, 56(1), 97–115. https://doi.org/10.1080/
02724980244000297

Rosenthal, R. (1979). The file drawer problem and tolerance for null
results. Psychological Bulletin, 86(3), 638–641. https://doi.org/10.
1037/0033-2909.86.3.638

Saffran, J. R. (2020). Statistical Language Learning in Infancy. Child
Development Perspectives, 14(1), 49–54. https://doi.org/10.1111/
cdep.12355

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996a). Statistical learning
by 8-month-old infants. Science, 274(5294), 1926–1928. https://doi.
org/10.1126/science.274.5294.1926

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996b). Word
Segmentation: The Role of Distributional Cues. Journal of
Memory and Language, 35(4), 606–621. https://doi.org/10.1006/
jmla.1996.0032

Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S.
(1997). Incidental language learning: Listening (and learning) out of
the corner of your ear.Psychological Science, 8(2), 101–105. https://
doi.org/10.1111/j.1467-9280.1997.tb00690.x

Shoaib, A., Wang, T., Hay, J. F., & Lany, J. (2018). Do infants learn
words from statistics? Evidence from English-learning infants hear-
ing Italian. Cognitive Science, 42(8), 3083–3099. https://doi.org/10.
1111/cogs.12673

Sundara, M., & Breiss, C. (2020). 5-month-olds are sensitive to phono-
tactic patterns in their native language. 45th Annual Boston
University Conference on Language Development. https://labphon.
org/labphon17/searchable-programme

Thiessen, E. D., & Saffran, J. R. (2003). When cues collide: Use of stress
and statistical cues to word boundaries by 7- to 9-month-old infants.
Developmental Psychology, 39(4), 706–716. https://doi.org/10.
1037/0012-1649.39.4.706

Vitevitch,M. S., & Luce, P. A. (2004). Aweb-based interface to calculate
phonotactic probability for words and nonwords in English.

Mem Cogn

http://www.jornada27.gelne.com.br/
http://www.jornada27.gelne.com.br/
https://doi.org/10.1371/journal.pone.0144016
https://doi.org/10.3758/BF03193146
https://doi.org/10.1016/j.cognition.2008.04.002
https://doi.org/10.1016/j.cognition.2008.04.002
https://doi.org/10.1037/0278-7393.25.1.84
https://doi.org/10.1016/j.jecp.2016.01.012
https://doi.org/10.1016/j.cogpsych.2011.06.002
https://doi.org/10.1016/j.cogpsych.2011.06.002
https://doi.org/10.1111/j.1532-7078.2011.00110.x
https://doi.org/10.1111/j.1532-7078.2011.00110.x
https://jasp-stats.org/
https://jasp-stats.org/
https://doi.org/10.1146/annurev-linguistics-011415-040616
https://doi.org/10.1146/annurev-linguistics-011415-040616
https://doi.org/10.1111/1467-8721.00159
https://doi.org/10.1006/jmla.1994.1030
https://doi.org/10.1006/jmla.1994.1030
https://doi.org/10.1037/xlm0000448
https://cran.r-project.org/package=vwr
https://doi.org/10.1016/j.cognition.2013.02.002
https://doi.org/10.1111/j.1467-8624.2012.01764.x
https://doi.org/10.1111/j.1467-8624.2012.01764.x
https://doi.org/10.1037/0096-1523.27.3.644
https://doi.org/10.1037/0096-1523.27.3.644
https://doi.org/10.1006/cogp.1999.0721
https://doi.org/10.1006/cogp.1999.0721
https://doi.org/10.3758/s13421-011-0074-3
https://doi.org/10.3758/s13421-011-0074-3
https://doi.org/10.1080/15475441.2011.609106
https://doi.org/10.1016/j.cognition.2008.02.003
https://doi.org/10.1016/j.cognition.2008.02.003
https://doi.org/10.1016/S0010-0277(01)00165-2
https://doi.org/10.1016/j.jml.2005.02.011
https://doi.org/10.1016/j.jml.2005.02.011
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1111/j.1467-8624.2009.01290.x
https://www.r-project.org/
https://doi.org/10.1080/02724980244000297
https://doi.org/10.1080/02724980244000297
https://doi.org/10.1037/0033-2909.86.3.638
https://doi.org/10.1037/0033-2909.86.3.638
https://doi.org/10.1111/cdep.12355
https://doi.org/10.1111/cdep.12355
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1006/jmla.1996.0032
https://doi.org/10.1006/jmla.1996.0032
https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
https://doi.org/10.1111/cogs.12673
https://doi.org/10.1111/cogs.12673
https://labphon.org/labphon17/searchable-programme
https://labphon.org/labphon17/searchable-programme
https://doi.org/10.1037/0012-1649.39.4.706
https://doi.org/10.1037/0012-1649.39.4.706


Behavior Research Methods, Instruments, & Computers, 36(3),
481–487. https://doi.org/10.3758/BF03195594

Wagenmakers, E.-J., Marsman,M., Jamil, T., Ly, A., Verhagen, J., Love,
J., Selker, R., Gronau, Q. F., Šmíra, M., Epskamp, S., Matzke, D.,
Rouder, J. N., & Morey, R. D. (2018). Bayesian inference for psy-
chology. Part I: Theoretical advantages and practical ramifications.
Psychonomic Bulletin & Review, 25(1), 35–57. https://doi.org/10.
3758/s13423-017-1343-3

Yang, C. D. (2004). Universal Grammar, statistics or both? Trends in
Cognitive Sciences, 8(10), 451–456. https://doi.org/10.1016/j.tics.
2004.08.006

Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s
N: A new measure of orthographic similarity. Psychonomic Bulletin
& Review, 15(5), 971–979. https://doi.org/10.3758/PBR.15.5.971

Zamuner, T. S. (2009). Phonotactic probabilities at the onset of language
development: Speech production and word position. Journal of
Speech Language and Hearing Research, 52(1), 49. https://doi.
org/10.1044/1092-4388(2008/07-0138)

Zipf, G. K. (1965). Human behavior and the principle of least effort: An
introduction ro human ecology. Hafner.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Mem Cogn

https://doi.org/10.3758/BF03195594
https://doi.org/10.3758/s13423-017-1343-3
https://doi.org/10.3758/s13423-017-1343-3
https://doi.org/10.1016/j.tics.2004.08.006
https://doi.org/10.1016/j.tics.2004.08.006
https://doi.org/10.3758/PBR.15.5.971
https://doi.org/10.1044/1092-4388(2008/�07-0138)
https://doi.org/10.1044/1092-4388(2008/�07-0138)

	When statistics collide: The use of transitional and phonotactic probability cues to word boundaries
	Abstract
	Method
	Participants
	Stimuli
	Procedure
	Data analysis

	Results
	Discussion
	References


